KGGen: A Generative Approach for Incipient Knowledge Graph Population

计算机科学 注释 判别式 图形 人工智能 生成语法 人口 生成模型 自然语言处理 知识图 任务(项目管理) 情报检索 机器学习 理论计算机科学 社会学 人口学 经济 管理
作者
Hao Chen,Chenwei Zhang,Jun Li,Philip S. Yu,Ning Jing
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2254-2267 被引量:6
标识
DOI:10.1109/tkde.2020.3014166
摘要

Knowledge graph is becoming an indispensable resource that offers structured information for numerous AI applications. However, the knowledge graph often suffers from its incompleteness. Building a complete, high-quality knowledge graph is time-consuming and requires significant human annotation efforts. In this paper, we study the Knowledge Graph Population task, which aims at extending the scale of structured knowledge, with a special focus on reducing data preparation and annotation efforts. Previous works mainly based on discriminative methods build classifiers and verify candidate triplets that are extracted from texts, which heavily rely on the quality of data collection and co-occurrance of entities in the text. However, such methods fail to generalize on entity pairs that are not highly co-occurred, and fail to discover entity pairs that are not co-occurred at all in the given text corpus. We introduce a generative perspective to approach this task and define each relationship by learning the data distribution that embodies the core common properties for relational reasoning. A generative model KGGen is proposed, which samples from the learned data distribution for each relation and can generate triplets regardless of entity pair co-occurrence in the text corpus. To further improve the generation quality while alleviate human annotation efforts, adversarial learning is adopted to not only encourage generating high quality triplets, but also give model the ability to automatically assess the generation quality. Quantitative and qualitative experimental results conducted on two real-world generic knowledge graphs show that the proposed model KGGen generates novel and meaningful triplets with improved efficiency and less human annotation comparing with the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
江风海韵完成签到,获得积分10
1秒前
火星上的从雪完成签到,获得积分10
1秒前
在水一方应助kai采纳,获得10
1秒前
打打应助留胡子的青柏采纳,获得10
2秒前
2秒前
zhanghw发布了新的文献求助10
2秒前
Frank完成签到,获得积分10
2秒前
桐桐应助小喵采纳,获得10
2秒前
香蕉觅云应助执笔客采纳,获得10
2秒前
light完成签到 ,获得积分10
2秒前
你仔细听完成签到,获得积分10
3秒前
3秒前
Sailzyf完成签到,获得积分10
3秒前
抓恐龙发布了新的文献求助10
3秒前
3秒前
汉堡包应助言小采纳,获得10
4秒前
Chen发布了新的文献求助10
4秒前
lql233完成签到,获得积分20
4秒前
雪白问兰完成签到 ,获得积分10
4秒前
4秒前
魅力蜗牛完成签到,获得积分10
4秒前
4秒前
upup小李完成签到 ,获得积分10
5秒前
手帕很忙完成签到,获得积分10
5秒前
害羞含雁发布了新的文献求助10
5秒前
5秒前
zp完成签到 ,获得积分10
5秒前
ren发布了新的文献求助10
6秒前
Lucas应助踏实的小海豚采纳,获得10
6秒前
Lucas应助2go采纳,获得10
6秒前
Jasper应助日月山河永在采纳,获得10
7秒前
7秒前
8秒前
8秒前
慕青应助没有名称采纳,获得10
8秒前
HEIKU应助聪慧的机器猫采纳,获得10
8秒前
拼搏翠桃发布了新的文献求助10
9秒前
8个老登发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672