已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

KGGen: A Generative Approach for Incipient Knowledge Graph Population

计算机科学 注释 判别式 图形 人工智能 生成语法 人口 生成模型 自然语言处理 知识图 任务(项目管理) 情报检索 机器学习 理论计算机科学 社会学 人口学 经济 管理
作者
Hao Chen,Chenwei Zhang,Jun Li,Philip S. Yu,Ning Jing
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2254-2267 被引量:6
标识
DOI:10.1109/tkde.2020.3014166
摘要

Knowledge graph is becoming an indispensable resource that offers structured information for numerous AI applications. However, the knowledge graph often suffers from its incompleteness. Building a complete, high-quality knowledge graph is time-consuming and requires significant human annotation efforts. In this paper, we study the Knowledge Graph Population task, which aims at extending the scale of structured knowledge, with a special focus on reducing data preparation and annotation efforts. Previous works mainly based on discriminative methods build classifiers and verify candidate triplets that are extracted from texts, which heavily rely on the quality of data collection and co-occurrance of entities in the text. However, such methods fail to generalize on entity pairs that are not highly co-occurred, and fail to discover entity pairs that are not co-occurred at all in the given text corpus. We introduce a generative perspective to approach this task and define each relationship by learning the data distribution that embodies the core common properties for relational reasoning. A generative model KGGen is proposed, which samples from the learned data distribution for each relation and can generate triplets regardless of entity pair co-occurrence in the text corpus. To further improve the generation quality while alleviate human annotation efforts, adversarial learning is adopted to not only encourage generating high quality triplets, but also give model the ability to automatically assess the generation quality. Quantitative and qualitative experimental results conducted on two real-world generic knowledge graphs show that the proposed model KGGen generates novel and meaningful triplets with improved efficiency and less human annotation comparing with the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑球完成签到,获得积分10
1秒前
4秒前
4秒前
认真的傲柏完成签到,获得积分10
4秒前
李志全完成签到 ,获得积分10
12秒前
稳重的蜜蜂完成签到,获得积分10
15秒前
Endlessway应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
起风了完成签到 ,获得积分10
17秒前
彭于晏应助dkb采纳,获得10
20秒前
Zoe完成签到 ,获得积分10
23秒前
嗯哼举报一二三四求助涉嫌违规
25秒前
orixero应助幽默果汁采纳,获得10
25秒前
26秒前
31秒前
32秒前
cosimo完成签到 ,获得积分10
34秒前
39秒前
小蘑菇应助紧张的店员采纳,获得10
44秒前
yaoccccchen发布了新的文献求助50
45秒前
NexusExplorer应助August采纳,获得10
45秒前
yangjoy完成签到 ,获得积分10
48秒前
50秒前
大大大大管子完成签到 ,获得积分10
52秒前
53秒前
Hayat发布了新的文献求助10
54秒前
www完成签到,获得积分10
59秒前
wucl1990发布了新的文献求助10
1分钟前
yaoccccchen完成签到,获得积分10
1分钟前
852应助小全采纳,获得10
1分钟前
lixia完成签到 ,获得积分10
1分钟前
yy完成签到,获得积分20
1分钟前
精明的迎松应助Hayat采纳,获得10
1分钟前
gladuhere完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hyian发布了新的文献求助10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223779
求助须知:如何正确求助?哪些是违规求助? 2872209
关于积分的说明 8179340
捐赠科研通 2539100
什么是DOI,文献DOI怎么找? 1371152
科研通“疑难数据库(出版商)”最低求助积分说明 646021
邀请新用户注册赠送积分活动 620010