亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KGGen: A Generative Approach for Incipient Knowledge Graph Population

计算机科学 注释 判别式 图形 人工智能 生成语法 人口 生成模型 自然语言处理 知识图 任务(项目管理) 情报检索 机器学习 理论计算机科学 人口学 管理 社会学 经济
作者
Hao Chen,Chenwei Zhang,Jun Li,Philip S. Yu,Ning Jing
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2254-2267 被引量:6
标识
DOI:10.1109/tkde.2020.3014166
摘要

Knowledge graph is becoming an indispensable resource that offers structured information for numerous AI applications. However, the knowledge graph often suffers from its incompleteness. Building a complete, high-quality knowledge graph is time-consuming and requires significant human annotation efforts. In this paper, we study the Knowledge Graph Population task, which aims at extending the scale of structured knowledge, with a special focus on reducing data preparation and annotation efforts. Previous works mainly based on discriminative methods build classifiers and verify candidate triplets that are extracted from texts, which heavily rely on the quality of data collection and co-occurrance of entities in the text. However, such methods fail to generalize on entity pairs that are not highly co-occurred, and fail to discover entity pairs that are not co-occurred at all in the given text corpus. We introduce a generative perspective to approach this task and define each relationship by learning the data distribution that embodies the core common properties for relational reasoning. A generative model KGGen is proposed, which samples from the learned data distribution for each relation and can generate triplets regardless of entity pair co-occurrence in the text corpus. To further improve the generation quality while alleviate human annotation efforts, adversarial learning is adopted to not only encourage generating high quality triplets, but also give model the ability to automatically assess the generation quality. Quantitative and qualitative experimental results conducted on two real-world generic knowledge graphs show that the proposed model KGGen generates novel and meaningful triplets with improved efficiency and less human annotation comparing with the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥德彪爱拉香蕉皮完成签到,获得积分10
3秒前
阿里完成签到,获得积分10
6秒前
1分钟前
1分钟前
1分钟前
leinei发布了新的文献求助10
1分钟前
整齐的不评完成签到,获得积分10
1分钟前
香蕉觅云应助中华男子汉采纳,获得10
1分钟前
1分钟前
顾矜应助jj采纳,获得10
2分钟前
阔达的沛文完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
jj发布了新的文献求助10
2分钟前
ph发布了新的文献求助30
2分钟前
2分钟前
ph完成签到,获得积分20
3分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
yhgz完成签到,获得积分10
4分钟前
Criminology34发布了新的文献求助300
4分钟前
大模型应助leinei采纳,获得30
4分钟前
5分钟前
CRUSADER发布了新的文献求助10
5分钟前
5分钟前
CRUSADER完成签到,获得积分10
5分钟前
商毛毛发布了新的文献求助10
5分钟前
大饼完成签到 ,获得积分10
5分钟前
cc完成签到,获得积分20
5分钟前
6分钟前
6分钟前
菠萝炒饭不要辣椒完成签到,获得积分10
6分钟前
6分钟前
朱明完成签到 ,获得积分10
6分钟前
balko完成签到,获得积分10
6分钟前
LiangRen完成签到 ,获得积分10
6分钟前
Kirin完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
国色不染尘完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413257
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122912
捐赠科研通 4445412
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408710