KGGen: A Generative Approach for Incipient Knowledge Graph Population

计算机科学 注释 判别式 图形 人工智能 生成语法 人口 生成模型 自然语言处理 知识图 任务(项目管理) 情报检索 机器学习 理论计算机科学 人口学 管理 社会学 经济
作者
Hao Chen,Chenwei Zhang,Jun Li,Philip S. Yu,Ning Jing
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2254-2267 被引量:6
标识
DOI:10.1109/tkde.2020.3014166
摘要

Knowledge graph is becoming an indispensable resource that offers structured information for numerous AI applications. However, the knowledge graph often suffers from its incompleteness. Building a complete, high-quality knowledge graph is time-consuming and requires significant human annotation efforts. In this paper, we study the Knowledge Graph Population task, which aims at extending the scale of structured knowledge, with a special focus on reducing data preparation and annotation efforts. Previous works mainly based on discriminative methods build classifiers and verify candidate triplets that are extracted from texts, which heavily rely on the quality of data collection and co-occurrance of entities in the text. However, such methods fail to generalize on entity pairs that are not highly co-occurred, and fail to discover entity pairs that are not co-occurred at all in the given text corpus. We introduce a generative perspective to approach this task and define each relationship by learning the data distribution that embodies the core common properties for relational reasoning. A generative model KGGen is proposed, which samples from the learned data distribution for each relation and can generate triplets regardless of entity pair co-occurrence in the text corpus. To further improve the generation quality while alleviate human annotation efforts, adversarial learning is adopted to not only encourage generating high quality triplets, but also give model the ability to automatically assess the generation quality. Quantitative and qualitative experimental results conducted on two real-world generic knowledge graphs show that the proposed model KGGen generates novel and meaningful triplets with improved efficiency and less human annotation comparing with the state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
doctor小陈发布了新的文献求助10
刚刚
科目三应助高兴的万宝路采纳,获得10
1秒前
乐乐应助顾文采纳,获得10
1秒前
2秒前
3秒前
3秒前
哦豁完成签到 ,获得积分10
3秒前
4秒前
júpiter发布了新的文献求助10
4秒前
louise应助刻苦秋尽采纳,获得10
5秒前
5秒前
hhl完成签到,获得积分10
5秒前
沉静的清涟完成签到,获得积分10
5秒前
zwjhbz完成签到,获得积分10
5秒前
6秒前
科研通AI6应助pjson15376449841采纳,获得10
6秒前
星辰大海应助wuxunxun2015采纳,获得10
7秒前
7秒前
无限荆完成签到 ,获得积分10
8秒前
英姑应助George采纳,获得10
8秒前
LZJ发布了新的文献求助10
8秒前
9秒前
搜文献的北北完成签到,获得积分10
9秒前
9秒前
Ava应助kantanna采纳,获得10
9秒前
tinale_huang发布了新的文献求助30
10秒前
tinale_huang发布了新的文献求助30
10秒前
tinale_huang发布了新的文献求助30
10秒前
tinale_huang发布了新的文献求助30
10秒前
星辰大海应助冷静火龙果采纳,获得30
10秒前
10秒前
Nico完成签到 ,获得积分10
10秒前
11秒前
亦木发布了新的文献求助10
12秒前
Lucas应助nuonuo采纳,获得10
12秒前
温婉的篮球完成签到,获得积分10
12秒前
13秒前
13秒前
Mizuki完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812