清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

KGGen: A Generative Approach for Incipient Knowledge Graph Population

计算机科学 注释 判别式 图形 人工智能 生成语法 人口 生成模型 自然语言处理 知识图 任务(项目管理) 情报检索 机器学习 理论计算机科学 人口学 管理 社会学 经济
作者
Hao Chen,Chenwei Zhang,Jun Li,Philip S. Yu,Ning Jing
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2254-2267 被引量:6
标识
DOI:10.1109/tkde.2020.3014166
摘要

Knowledge graph is becoming an indispensable resource that offers structured information for numerous AI applications. However, the knowledge graph often suffers from its incompleteness. Building a complete, high-quality knowledge graph is time-consuming and requires significant human annotation efforts. In this paper, we study the Knowledge Graph Population task, which aims at extending the scale of structured knowledge, with a special focus on reducing data preparation and annotation efforts. Previous works mainly based on discriminative methods build classifiers and verify candidate triplets that are extracted from texts, which heavily rely on the quality of data collection and co-occurrance of entities in the text. However, such methods fail to generalize on entity pairs that are not highly co-occurred, and fail to discover entity pairs that are not co-occurred at all in the given text corpus. We introduce a generative perspective to approach this task and define each relationship by learning the data distribution that embodies the core common properties for relational reasoning. A generative model KGGen is proposed, which samples from the learned data distribution for each relation and can generate triplets regardless of entity pair co-occurrence in the text corpus. To further improve the generation quality while alleviate human annotation efforts, adversarial learning is adopted to not only encourage generating high quality triplets, but also give model the ability to automatically assess the generation quality. Quantitative and qualitative experimental results conducted on two real-world generic knowledge graphs show that the proposed model KGGen generates novel and meaningful triplets with improved efficiency and less human annotation comparing with the state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vbnn完成签到 ,获得积分10
4秒前
Jasper应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
狂野的含烟完成签到 ,获得积分10
14秒前
24秒前
黑昼发布了新的文献求助10
27秒前
隐形曼青应助黑昼采纳,获得10
48秒前
飞天大南瓜完成签到,获得积分10
56秒前
刘刘完成签到 ,获得积分10
1分钟前
1分钟前
new1完成签到,获得积分10
1分钟前
jing完成签到,获得积分20
1分钟前
大喜喜发布了新的文献求助10
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
SciGPT应助ceeray23采纳,获得20
2分钟前
arniu2008完成签到,获得积分20
2分钟前
3分钟前
soilbeginner发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
soilbeginner完成签到,获得积分20
3分钟前
莫miang完成签到,获得积分10
4分钟前
不器完成签到 ,获得积分10
5分钟前
自律完成签到,获得积分10
5分钟前
5分钟前
阿尔法贝塔完成签到 ,获得积分10
5分钟前
黑昼发布了新的文献求助10
5分钟前
天天快乐应助黑昼采纳,获得10
6分钟前
老迟到的友桃完成签到 ,获得积分10
6分钟前
方白秋完成签到,获得积分0
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
菠萝包完成签到 ,获得积分10
8分钟前
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771559
捐赠科研通 4614136
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531