KGGen: A Generative Approach for Incipient Knowledge Graph Population

计算机科学 注释 判别式 图形 人工智能 生成语法 人口 生成模型 自然语言处理 知识图 任务(项目管理) 情报检索 机器学习 理论计算机科学 社会学 人口学 经济 管理
作者
Hao Chen,Chenwei Zhang,Jun Li,Philip S. Yu,Ning Jing
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (5): 2254-2267 被引量:6
标识
DOI:10.1109/tkde.2020.3014166
摘要

Knowledge graph is becoming an indispensable resource that offers structured information for numerous AI applications. However, the knowledge graph often suffers from its incompleteness. Building a complete, high-quality knowledge graph is time-consuming and requires significant human annotation efforts. In this paper, we study the Knowledge Graph Population task, which aims at extending the scale of structured knowledge, with a special focus on reducing data preparation and annotation efforts. Previous works mainly based on discriminative methods build classifiers and verify candidate triplets that are extracted from texts, which heavily rely on the quality of data collection and co-occurrance of entities in the text. However, such methods fail to generalize on entity pairs that are not highly co-occurred, and fail to discover entity pairs that are not co-occurred at all in the given text corpus. We introduce a generative perspective to approach this task and define each relationship by learning the data distribution that embodies the core common properties for relational reasoning. A generative model KGGen is proposed, which samples from the learned data distribution for each relation and can generate triplets regardless of entity pair co-occurrence in the text corpus. To further improve the generation quality while alleviate human annotation efforts, adversarial learning is adopted to not only encourage generating high quality triplets, but also give model the ability to automatically assess the generation quality. Quantitative and qualitative experimental results conducted on two real-world generic knowledge graphs show that the proposed model KGGen generates novel and meaningful triplets with improved efficiency and less human annotation comparing with the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真的不想干活了完成签到,获得积分10
刚刚
123完成签到,获得积分10
2秒前
peiyy完成签到,获得积分10
2秒前
4秒前
5秒前
螺蛳粉完成签到,获得积分10
7秒前
8秒前
8秒前
追忆发布了新的文献求助10
9秒前
wuminru完成签到,获得积分10
11秒前
12秒前
Ava应助lzx采纳,获得10
13秒前
浮熙发布了新的文献求助10
14秒前
15秒前
16秒前
英姑应助追忆采纳,获得10
16秒前
17秒前
17秒前
17秒前
18秒前
zxx5313491完成签到,获得积分10
19秒前
fuxixixi发布了新的文献求助10
20秒前
20秒前
whisper发布了新的文献求助10
20秒前
hehe完成签到,获得积分10
20秒前
勤恳绝义发布了新的文献求助10
21秒前
21秒前
李琳赛发布了新的文献求助30
22秒前
香蕉觅云应助jinzhen采纳,获得10
22秒前
zxx5313491发布了新的文献求助10
23秒前
23秒前
闪闪的YOSH完成签到,获得积分10
24秒前
26秒前
26秒前
英俊的铭应助仂尤采纳,获得10
27秒前
27秒前
fuxixixi完成签到,获得积分10
28秒前
领导范儿应助伯赏笑白采纳,获得10
28秒前
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824