Weakly-Supervised teacher-Student network for liver tumor segmentation from non-enhanced images

人工智能 计算机科学 分割 对比度(视觉) 模式识别(心理学) 肝肿瘤 最小边界框 图像(数学) 计算机视觉 医学 癌症研究 肝细胞癌
作者
Dong Zhang,Bo Chen,Jaron Chong,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102005-102005 被引量:38
标识
DOI:10.1016/j.media.2021.102005
摘要

Accurate liver tumor segmentation without contrast agents (non-enhanced images) avoids the contrast-agent-associated time-consuming and high risk, which offers radiologists quick and safe assistance to diagnose and treat the liver tumor. However, without contrast agents enhancing, the tumor in liver images presents low contrast and even invisible to naked eyes. Thus the liver tumor segmentation from non-enhanced images is quite challenging. We propose a Weakly-Supervised Teacher-Student network (WSTS) to address the liver tumor segmentation in non-enhanced images by leveraging additional box-level-labeled data (labeled with a tumor bounding-box). WSTS deploys a weakly-supervised teacher-student framework (TCH-ST), namely, a Teacher Module learns to detect and segment the tumor in enhanced images during training, which facilitates a Student Module to detect and segment the tumor in non-enhanced images independently during testing. To detect the tumor accurately, the WSTS proposes a Dual-strategy DRL (DDRL), which develops two tumor detection strategies by creatively introducing a relative-entropy bias in the DRL. To accurately predict a tumor mask for the box-level-labeled enhanced image and thus improve tumor segmentation in non-enhanced images, the WSTS proposes an Uncertainty-Sifting Self-Ensembling (USSE). The USSE exploits the weakly-labeled data with self-ensembling and evaluates the prediction reliability with a newly-designed Multi-scale Uncertainty-estimation. WSTS is validated with a 2D MRI dataset, where the experiment achieves 83.11% of Dice and 85.12% of Recall in 50 patient testing data after training by 200 patient data (half amount data is box-level-labeled). Such a great result illustrates the competence of WSTS to segment the liver tumor from non-enhanced images. Thus, WSTS has excellent potential to assist radiologists by liver tumor segmentation without contrast-agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜发布了新的文献求助10
刚刚
鹿过发布了新的文献求助10
刚刚
阳光友蕊发布了新的文献求助10
3秒前
4秒前
David完成签到 ,获得积分10
5秒前
7秒前
7秒前
HTniconico完成签到 ,获得积分10
7秒前
科研通AI6.1应助欢喜海采纳,获得10
7秒前
7秒前
顺心的觅荷完成签到 ,获得积分10
8秒前
rburbidn发布了新的文献求助10
9秒前
乐乐应助瑰慈采纳,获得10
10秒前
量子星尘发布了新的文献求助30
10秒前
研友_VZG7GZ应助like采纳,获得10
11秒前
科研韭菜发布了新的文献求助10
13秒前
14秒前
Suki发布了新的文献求助10
14秒前
14秒前
mirror应助xiang采纳,获得10
14秒前
深年完成签到,获得积分10
15秒前
慕青应助浮云采纳,获得10
17秒前
Everglow完成签到,获得积分10
17秒前
17秒前
6666应助djbj2022采纳,获得10
18秒前
山下梅子酒完成签到 ,获得积分10
19秒前
19秒前
Ava应助木子李采纳,获得10
19秒前
19秒前
6666应助ichia采纳,获得10
20秒前
科研通AI2S应助无语的代真采纳,获得10
20秒前
20秒前
21秒前
22秒前
嗯呐发布了新的文献求助10
24秒前
kk完成签到 ,获得积分10
24秒前
24秒前
善莫大焉发布了新的文献求助10
24秒前
小怪完成签到,获得积分10
24秒前
like发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811