Weakly-Supervised teacher-Student network for liver tumor segmentation from non-enhanced images

人工智能 计算机科学 分割 对比度(视觉) 模式识别(心理学) 肝肿瘤 最小边界框 图像(数学) 计算机视觉 医学 癌症研究 肝细胞癌
作者
Dong Zhang,Bo Chen,Jaron Chong,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102005-102005 被引量:38
标识
DOI:10.1016/j.media.2021.102005
摘要

Accurate liver tumor segmentation without contrast agents (non-enhanced images) avoids the contrast-agent-associated time-consuming and high risk, which offers radiologists quick and safe assistance to diagnose and treat the liver tumor. However, without contrast agents enhancing, the tumor in liver images presents low contrast and even invisible to naked eyes. Thus the liver tumor segmentation from non-enhanced images is quite challenging. We propose a Weakly-Supervised Teacher-Student network (WSTS) to address the liver tumor segmentation in non-enhanced images by leveraging additional box-level-labeled data (labeled with a tumor bounding-box). WSTS deploys a weakly-supervised teacher-student framework (TCH-ST), namely, a Teacher Module learns to detect and segment the tumor in enhanced images during training, which facilitates a Student Module to detect and segment the tumor in non-enhanced images independently during testing. To detect the tumor accurately, the WSTS proposes a Dual-strategy DRL (DDRL), which develops two tumor detection strategies by creatively introducing a relative-entropy bias in the DRL. To accurately predict a tumor mask for the box-level-labeled enhanced image and thus improve tumor segmentation in non-enhanced images, the WSTS proposes an Uncertainty-Sifting Self-Ensembling (USSE). The USSE exploits the weakly-labeled data with self-ensembling and evaluates the prediction reliability with a newly-designed Multi-scale Uncertainty-estimation. WSTS is validated with a 2D MRI dataset, where the experiment achieves 83.11% of Dice and 85.12% of Recall in 50 patient testing data after training by 200 patient data (half amount data is box-level-labeled). Such a great result illustrates the competence of WSTS to segment the liver tumor from non-enhanced images. Thus, WSTS has excellent potential to assist radiologists by liver tumor segmentation without contrast-agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
djdj发布了新的文献求助10
1秒前
个性的抽象完成签到 ,获得积分10
2秒前
gulugulugulug发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
bkagyin应助简单的夜绿采纳,获得10
3秒前
4秒前
4秒前
领导范儿应助爱听歌代芙采纳,获得10
5秒前
5秒前
ayang001完成签到,获得积分10
5秒前
ou发布了新的文献求助10
6秒前
6秒前
8秒前
Wind发布了新的文献求助50
8秒前
苏苏发布了新的文献求助10
9秒前
香蕉觅云应助雷雷采纳,获得10
9秒前
啦啦啦完成签到,获得积分10
9秒前
DiJia完成签到 ,获得积分10
10秒前
冰棍鸡杂完成签到,获得积分10
10秒前
共享精神应助刘岩松采纳,获得10
10秒前
Clarissa完成签到,获得积分10
10秒前
池鱼发布了新的文献求助10
11秒前
11秒前
ts完成签到,获得积分10
12秒前
小二郎应助刚刚好采纳,获得10
12秒前
NexusExplorer应助刚刚好采纳,获得10
12秒前
李梦婷发布了新的文献求助10
12秒前
12秒前
酷炫的之柔完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
小凡完成签到,获得积分20
14秒前
bkagyin应助TingtingGZ采纳,获得10
14秒前
asdfzxcv应助月星采纳,获得10
14秒前
科研通AI6应助积极的珩采纳,获得10
16秒前
田様应助djdj采纳,获得10
17秒前
吕yj发布了新的文献求助10
17秒前
17秒前
小凡发布了新的文献求助10
17秒前
田様应助乐观的鞋垫采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666691
求助须知:如何正确求助?哪些是违规求助? 4882812
关于积分的说明 15117878
捐赠科研通 4825664
什么是DOI,文献DOI怎么找? 2583534
邀请新用户注册赠送积分活动 1537723
关于科研通互助平台的介绍 1495910