亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly-Supervised teacher-Student network for liver tumor segmentation from non-enhanced images

人工智能 计算机科学 分割 对比度(视觉) 模式识别(心理学) 肝肿瘤 最小边界框 图像(数学) 计算机视觉 医学 癌症研究 肝细胞癌
作者
Dong Zhang,Bo Chen,Jaron Chong,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102005-102005 被引量:38
标识
DOI:10.1016/j.media.2021.102005
摘要

Accurate liver tumor segmentation without contrast agents (non-enhanced images) avoids the contrast-agent-associated time-consuming and high risk, which offers radiologists quick and safe assistance to diagnose and treat the liver tumor. However, without contrast agents enhancing, the tumor in liver images presents low contrast and even invisible to naked eyes. Thus the liver tumor segmentation from non-enhanced images is quite challenging. We propose a Weakly-Supervised Teacher-Student network (WSTS) to address the liver tumor segmentation in non-enhanced images by leveraging additional box-level-labeled data (labeled with a tumor bounding-box). WSTS deploys a weakly-supervised teacher-student framework (TCH-ST), namely, a Teacher Module learns to detect and segment the tumor in enhanced images during training, which facilitates a Student Module to detect and segment the tumor in non-enhanced images independently during testing. To detect the tumor accurately, the WSTS proposes a Dual-strategy DRL (DDRL), which develops two tumor detection strategies by creatively introducing a relative-entropy bias in the DRL. To accurately predict a tumor mask for the box-level-labeled enhanced image and thus improve tumor segmentation in non-enhanced images, the WSTS proposes an Uncertainty-Sifting Self-Ensembling (USSE). The USSE exploits the weakly-labeled data with self-ensembling and evaluates the prediction reliability with a newly-designed Multi-scale Uncertainty-estimation. WSTS is validated with a 2D MRI dataset, where the experiment achieves 83.11% of Dice and 85.12% of Recall in 50 patient testing data after training by 200 patient data (half amount data is box-level-labeled). Such a great result illustrates the competence of WSTS to segment the liver tumor from non-enhanced images. Thus, WSTS has excellent potential to assist radiologists by liver tumor segmentation without contrast-agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
怕黑行恶完成签到,获得积分10
16秒前
21秒前
22秒前
5L发布了新的文献求助10
29秒前
45秒前
1分钟前
纯洁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
钟可可发布了新的文献求助10
2分钟前
科研通AI2S应助钟可可采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
张可完成签到 ,获得积分10
3分钟前
Lucifer完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助白华苍松采纳,获得10
4分钟前
zxq1996完成签到 ,获得积分10
4分钟前
4分钟前
嘻嘻哈哈完成签到,获得积分10
5分钟前
隐形曼青应助YafishYc采纳,获得10
5分钟前
手撕蛋完成签到 ,获得积分10
5分钟前
科研通AI2S应助白华苍松采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助张弘采纳,获得10
5分钟前
6分钟前
呜呜呜完成签到,获得积分10
6分钟前
张弘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
sbmanishi完成签到,获得积分10
6分钟前
嗯哼应助白华苍松采纳,获得20
6分钟前
大碗完成签到 ,获得积分10
7分钟前
Yolen LI完成签到,获得积分10
7分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344136
求助须知:如何正确求助?哪些是违规求助? 2971147
关于积分的说明 8646721
捐赠科研通 2651399
什么是DOI,文献DOI怎么找? 1451760
科研通“疑难数据库(出版商)”最低求助积分说明 672282
邀请新用户注册赠送积分活动 661790