Weakly-Supervised teacher-Student network for liver tumor segmentation from non-enhanced images

人工智能 计算机科学 分割 对比度(视觉) 模式识别(心理学) 肝肿瘤 最小边界框 图像(数学) 计算机视觉 医学 癌症研究 肝细胞癌
作者
Dong Zhang,Bo Chen,Jaron Chong,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102005-102005 被引量:38
标识
DOI:10.1016/j.media.2021.102005
摘要

Accurate liver tumor segmentation without contrast agents (non-enhanced images) avoids the contrast-agent-associated time-consuming and high risk, which offers radiologists quick and safe assistance to diagnose and treat the liver tumor. However, without contrast agents enhancing, the tumor in liver images presents low contrast and even invisible to naked eyes. Thus the liver tumor segmentation from non-enhanced images is quite challenging. We propose a Weakly-Supervised Teacher-Student network (WSTS) to address the liver tumor segmentation in non-enhanced images by leveraging additional box-level-labeled data (labeled with a tumor bounding-box). WSTS deploys a weakly-supervised teacher-student framework (TCH-ST), namely, a Teacher Module learns to detect and segment the tumor in enhanced images during training, which facilitates a Student Module to detect and segment the tumor in non-enhanced images independently during testing. To detect the tumor accurately, the WSTS proposes a Dual-strategy DRL (DDRL), which develops two tumor detection strategies by creatively introducing a relative-entropy bias in the DRL. To accurately predict a tumor mask for the box-level-labeled enhanced image and thus improve tumor segmentation in non-enhanced images, the WSTS proposes an Uncertainty-Sifting Self-Ensembling (USSE). The USSE exploits the weakly-labeled data with self-ensembling and evaluates the prediction reliability with a newly-designed Multi-scale Uncertainty-estimation. WSTS is validated with a 2D MRI dataset, where the experiment achieves 83.11% of Dice and 85.12% of Recall in 50 patient testing data after training by 200 patient data (half amount data is box-level-labeled). Such a great result illustrates the competence of WSTS to segment the liver tumor from non-enhanced images. Thus, WSTS has excellent potential to assist radiologists by liver tumor segmentation without contrast-agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dawin完成签到,获得积分10
1秒前
1秒前
景飞丹发布了新的文献求助10
2秒前
shudder完成签到,获得积分10
2秒前
2秒前
2秒前
陈冠羽发布了新的文献求助10
4秒前
4秒前
angelalxj发布了新的文献求助10
4秒前
5秒前
xiaotao发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
cookie-W完成签到,获得积分20
6秒前
丘比特应助留胡子的代秋采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
张婷发布了新的文献求助10
8秒前
WQQ发布了新的文献求助10
8秒前
9秒前
lan123完成签到,获得积分10
10秒前
祝好完成签到,获得积分10
10秒前
瓜瓜完成签到 ,获得积分10
11秒前
11秒前
麦当发布了新的文献求助20
11秒前
11秒前
王赟晖发布了新的文献求助10
12秒前
Lucas应助涨涨涨采纳,获得10
12秒前
黑YA发布了新的文献求助10
12秒前
12秒前
万能图书馆应助angelalxj采纳,获得10
12秒前
迷路的心锁完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
wangliangyu发布了新的文献求助10
14秒前
xuhang完成签到,获得积分10
14秒前
111发布了新的文献求助10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443078
求助须知:如何正确求助?哪些是违规求助? 4553025
关于积分的说明 14240439
捐赠科研通 4474583
什么是DOI,文献DOI怎么找? 2452036
邀请新用户注册赠送积分活动 1442988
关于科研通互助平台的介绍 1418689