Weakly-Supervised teacher-Student network for liver tumor segmentation from non-enhanced images

人工智能 计算机科学 分割 对比度(视觉) 模式识别(心理学) 肝肿瘤 最小边界框 图像(数学) 计算机视觉 医学 癌症研究 肝细胞癌
作者
Dong Zhang,Bo Chen,Jaron Chong,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102005-102005 被引量:38
标识
DOI:10.1016/j.media.2021.102005
摘要

Accurate liver tumor segmentation without contrast agents (non-enhanced images) avoids the contrast-agent-associated time-consuming and high risk, which offers radiologists quick and safe assistance to diagnose and treat the liver tumor. However, without contrast agents enhancing, the tumor in liver images presents low contrast and even invisible to naked eyes. Thus the liver tumor segmentation from non-enhanced images is quite challenging. We propose a Weakly-Supervised Teacher-Student network (WSTS) to address the liver tumor segmentation in non-enhanced images by leveraging additional box-level-labeled data (labeled with a tumor bounding-box). WSTS deploys a weakly-supervised teacher-student framework (TCH-ST), namely, a Teacher Module learns to detect and segment the tumor in enhanced images during training, which facilitates a Student Module to detect and segment the tumor in non-enhanced images independently during testing. To detect the tumor accurately, the WSTS proposes a Dual-strategy DRL (DDRL), which develops two tumor detection strategies by creatively introducing a relative-entropy bias in the DRL. To accurately predict a tumor mask for the box-level-labeled enhanced image and thus improve tumor segmentation in non-enhanced images, the WSTS proposes an Uncertainty-Sifting Self-Ensembling (USSE). The USSE exploits the weakly-labeled data with self-ensembling and evaluates the prediction reliability with a newly-designed Multi-scale Uncertainty-estimation. WSTS is validated with a 2D MRI dataset, where the experiment achieves 83.11% of Dice and 85.12% of Recall in 50 patient testing data after training by 200 patient data (half amount data is box-level-labeled). Such a great result illustrates the competence of WSTS to segment the liver tumor from non-enhanced images. Thus, WSTS has excellent potential to assist radiologists by liver tumor segmentation without contrast-agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
给我好好读书完成签到,获得积分10
1秒前
隋玉发布了新的文献求助10
2秒前
Criminology34给moon的求助进行了留言
3秒前
晨晨晨完成签到,获得积分10
4秒前
4秒前
Cell完成签到 ,获得积分10
5秒前
辛勤的乌发布了新的文献求助10
5秒前
CGBIO发布了新的文献求助10
6秒前
Lliu发布了新的文献求助10
10秒前
Zzz发布了新的文献求助10
10秒前
阙文琴发布了新的文献求助20
10秒前
11秒前
11秒前
眼睛大的星月完成签到,获得积分10
12秒前
无花果应助晗晗有酒窝采纳,获得10
12秒前
Luochenxi发布了新的文献求助50
14秒前
神勇太清发布了新的文献求助10
14秒前
万能图书馆应助小石头采纳,获得30
15秒前
qwert完成签到,获得积分20
15秒前
16秒前
16秒前
Ttttt发布了新的文献求助10
17秒前
吃不完的玉米完成签到,获得积分10
17秒前
引商刻羽完成签到,获得积分10
18秒前
宇宙最萌小猫咪完成签到 ,获得积分10
19秒前
1206发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
李爱国应助corner采纳,获得10
21秒前
小好完成签到,获得积分10
21秒前
21秒前
23秒前
23秒前
FashionBoy应助YHDing采纳,获得10
24秒前
24秒前
24秒前
24秒前
ZhS_发布了新的文献求助10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344089
求助须知:如何正确求助?哪些是违规求助? 4479449
关于积分的说明 13942876
捐赠科研通 4376498
什么是DOI,文献DOI怎么找? 2404811
邀请新用户注册赠送积分活动 1397185
关于科研通互助平台的介绍 1369514