Combing modified Grabcut, K-means clustering and sparse representation classification for weed recognition in wheat field

人工智能 计算机科学 模式识别(心理学) 聚类分析 稀疏逼近 人工神经网络 机器学习 支持向量机 k均值聚类 深度学习
作者
Shanwen Zhang,Wenzhun Huang,Zuliang Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:452: 665-674 被引量:1
标识
DOI:10.1016/j.neucom.2020.06.140
摘要

Abstract Weeding is beneficial to the growth of the crops in field. At present, weeding in China mainly relies on chemical herbicide spraying on a large area, which leads to environmental pollution. Combined with digital image processing and pattern recognition technology, weed species identification in wheat seedling stage in field is of great significance to realize the variable spraying of herbicide, reduce the cost and protect the ecological environment. Weed species identification in field by machine vision is one of the challenging and hard topics because of the diversity and changeability of the weed in field. A weed species recognition approach is proposed combining modified Grabcut, adaptive fuzzy dynamic K-means algorithms and sparse representation classification (SRC). First, the original weed images are enhanced and noise is suppressed using filtering technique, and in the segmentation phase, each weed image is coarsely segmented by the modified GrabCut algorithm to remove most of background of the original image captured in the field, which can reduce the computing cost and recognition time. The original weed image is segmented by adaptive fuzzy dynamic K-means. Finally the weed species is recognized by SRC. Compared with the other weed recognition methods, the proposed method integrated the advantages of three approaches, (1) the improved Grabcut method does not require human interaction and can automatically segment the background, (2) the dynamic K-means algorithm introduces fitness function to evaluate clustering, which reduces the dependence of traditional K-means clustering algorithm on the initial value of clustering center to a certain extent, and avoids the problems such as dead zone center and center redundancy caused by local extremum, (3) SRC is utilized to classify the weed species. To test the proposed method, a lot of experiments are carried on the wheat weed image dataset. The results validate that the proposed method is effective for the weed species recognition, which can be used as a preliminary step for precision applying pesticide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助tz采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
Xxxxzzz完成签到,获得积分10
2秒前
飘逸晓曼完成签到 ,获得积分20
3秒前
23我完成签到,获得积分10
3秒前
云瑾应助登登采纳,获得10
3秒前
苗条的紫文完成签到,获得积分20
3秒前
赵怡梦发布了新的文献求助10
4秒前
罗大壮发布了新的文献求助10
4秒前
quxiaofei关注了科研通微信公众号
5秒前
6秒前
7秒前
8秒前
8秒前
美好斓应助林筱辰采纳,获得100
9秒前
CodeCraft应助笨笨歌曲采纳,获得10
10秒前
10秒前
11秒前
亦承梦完成签到,获得积分10
11秒前
12秒前
CL完成签到,获得积分10
12秒前
九点半上课了完成签到 ,获得积分10
13秒前
橘温茶暖发布了新的文献求助30
13秒前
Paridis发布了新的文献求助10
13秒前
13秒前
14秒前
搜集达人应助XC采纳,获得10
17秒前
17秒前
情怀应助gaogao采纳,获得10
18秒前
无花果应助hyl采纳,获得10
18秒前
18秒前
monster0101发布了新的文献求助10
19秒前
19秒前
搜集达人应助nnnn采纳,获得10
19秒前
无限的可乐完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919