Deep transfer learning with limited data for machinery fault diagnosis

计算机科学 学习迁移 人工智能 适应(眼睛) 领域(数学分析) 断层(地质) 域适应 传输(计算) 机器学习 数据挖掘 分类器(UML) 数学 地质学 数学分析 物理 光学 地震学 并行计算
作者
Te Han,Chao Liu,Rui Wu,Dongxiang Jiang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:103: 107150-107150 被引量:156
标识
DOI:10.1016/j.asoc.2021.107150
摘要

Abstract Investigation of deep transfer learning on machinery fault diagnosis is helpful to overcome the limitations of a large volume of training data, and accelerate the practical applications of diagnostic algorithms. However, previous reported methods, mainly including parameter transfer and domain adaptation, still require a few labeled or massive unlabeled fault samples, which are not always available. In general, only extremely limited fault data, namely sparse data (single or several samples), can be obtained, and the labeling is also easy to be processed. This paper presents a novel framework for disposing the problem of transfer diagnosis with sparse target data. In consideration of the unclear data distribution described by the sparse data, the main idea is to pair the source and target data with the same machine condition and conduct individual domain adaptation so as to alleviate the lack of target data, diminish the distribution discrepancy as well as avoid negative transfer. More impressive, the issue of label space mismatching can be appropriately addressed in our network. The extensive experiments on two case studies are used to verify the proposed method. Comprehensive transfer scenarios, i.e., diverse working conditions and diverse machines, are considered. The thorough evaluation shows that the proposed method presents superior performance with respect to traditional transfer learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助bibi采纳,获得10
刚刚
1秒前
2秒前
2秒前
LMZ完成签到,获得积分20
2秒前
Die完成签到,获得积分10
2秒前
Rebeccaaaa发布了新的文献求助10
3秒前
麦子发布了新的文献求助30
3秒前
传奇3应助ABC采纳,获得10
3秒前
4秒前
4秒前
linovn发布了新的文献求助10
6秒前
ZSQ发布了新的文献求助10
6秒前
6秒前
隐形曼青应助可靠之玉采纳,获得10
6秒前
Wudifairy完成签到,获得积分10
7秒前
LMZ发布了新的文献求助10
7秒前
Buendia完成签到,获得积分10
8秒前
HYCT发布了新的文献求助10
8秒前
8秒前
leodu发布了新的文献求助10
8秒前
俊逸幻柏发布了新的文献求助10
9秒前
9秒前
罗勍完成签到,获得积分10
9秒前
13秒前
bibi完成签到,获得积分20
13秒前
多情自古空余恨完成签到,获得积分10
13秒前
dong应助随意采纳,获得10
14秒前
羊羊羊完成签到,获得积分10
14秒前
HYCT完成签到,获得积分10
15秒前
欣新发布了新的文献求助10
15秒前
15秒前
于茜完成签到,获得积分10
15秒前
斯文败类应助冷艳的飞凤采纳,获得10
16秒前
Lin完成签到,获得积分10
17秒前
17秒前
18秒前
阿月完成签到,获得积分10
18秒前
Jasper应助怕孤独的海瑶采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798