类有机物
干细胞
诱导多能干细胞
生物
细胞生物学
胚胎干细胞
成体干细胞
牙乳头
祖细胞
组织工程
定向微分
医学
病理
遗传学
基因
成牙本质细胞
牙本质
作者
Xin Gao,Yang Wu,Li Liao,Weidong Tian
标识
DOI:10.1177/0022034520983808
摘要
Oral organoids are complex 3-dimensional structures that develop from stem cells or organ-specific progenitors through a process of self-organization and re-create architectures and functionalities similar to in vivo organs and tissues in the oral and maxillofacial region. Recently, striking advancements have been made in the construction and application of oral organoids of the tooth, salivary gland, and tongue. Dental epithelial and mesenchymal cells isolated from tooth germs or derived from pluripotent stem cells could generate tooth germ–like organoids by self-organization in a specific culture system. Tooth organoids can also be constructed based on tissue engineering principles by seeding stem cells on a scaffold with the bioregulatory functions of odontogenic differentiation. Two main approaches have been used to construct salivary gland organoids: 1) incubation of salivary gland–derived stem/progenitor cells in a 3-dimensional culture system to form the structure of the gland through mimicking regenerative processes and 2) inducing of pluripotent stem cells to generate embryonic salivary glands by replicating the development process. Taste bud organoids can be generated by embedding isolated circumvallate papilla tissue in Matrigel with a mixture of growth factors, while lingual epithelial organoids have been constructed using lingual stem cells in a suitable culture system containing specific signaling molecules. These oral organoids usually maintain the main functions and characteristic structures of the corresponding organ to a certain extent. Furthermore, using cells isolated from patients, oral organoids could replicate specific diseases such as maxillofacial tumors and tooth dysplasia. Until now, oral organoids have been applied in the study of mechanisms of tooth development, pathology and regeneration of the salivary gland, and precision therapeutics for tongue cancer. These findings strongly demonstrate that the organoid technique is a novel paradigm for the study of the development, pathology, and regeneration of oral and maxillofacial tissue.
科研通智能强力驱动
Strongly Powered by AbleSci AI