重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode

材料科学 阳极 复合数 纳米颗粒 化学工程 锂离子电池 电池(电) 纳米技术 电解质 复合材料 电极 冶金 化学 物理 工程类 物理化学 功率(物理) 量子力学
作者
Hyeon‐Ji Shin,Jang‐Yeon Hwang,Hyun J. Kwon,Won‐Jin Kwak,Sang‐Ok Kim,Hyung‐Seok Kim,Hun‐Gi Jung
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:8 (37): 14150-14158 被引量:58
标识
DOI:10.1021/acssuschemeng.0c04828
摘要

Owing to the high theoretical capacity, low operating potentials, and natural abundance, silicon (Si) is considered as one of the most promising anode materials for lithium-ion batteries. However, a large volume change during alloying-dealloying often results in pulverization, electrical contact loss, and unstable solid-electrolyte interphase (SEI) formation, leading to rapid capacity fading. We present a rational encapsulation strategy of a silicon-carbon (Si-C) composite as a high-performance anode material for lithium-ion batteries (LIBs). The Si-C composite material is prepared via a one-pot hydrothermal method by using silicon nanoparticles modified using an etching route and sucrose as a carbon precursor. The proposed Si-C composite material has a meso-macroporous structure and contains a large weight fraction of silicon nanoparticles (40 wt %) encapsulated in a micrometric carbon sphere (similar to 3 mu m). In the composite material, the carbon framework tightly encapsulates the silicon nanoparticles to the interior of the particle, which not only provides electrical conductivity but also decreases the stress/strain of the material during the alloying-dealloying process. The material demonstrates high initial capacity of 1300 mAh g(-1), excellent capacity retention of 90% after 200 cycles, and fast charging-discharging capability within 12 min. We believe that the proposed encapsulation strategy here will be helpful in developing a highenergy and low-cost Si-C composite anode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助迅速如柏采纳,获得10
刚刚
刚刚
蚊蚊爱读书应助王杰秀采纳,获得10
刚刚
1秒前
文刀发布了新的文献求助10
1秒前
1秒前
123noo发布了新的文献求助10
1秒前
所所应助大胆绮兰采纳,获得10
1秒前
善学以致用应助lyznbhh采纳,获得10
1秒前
2秒前
2秒前
心灵美的书雁完成签到 ,获得积分10
2秒前
caleb完成签到 ,获得积分10
2秒前
芜湖发布了新的文献求助10
2秒前
2秒前
2秒前
大个应助冷冷采纳,获得10
2秒前
3秒前
子子发布了新的文献求助10
3秒前
3秒前
songlai_发布了新的文献求助10
4秒前
张牧之发布了新的文献求助10
4秒前
4秒前
liuliu完成签到,获得积分20
4秒前
搜集达人应助右右采纳,获得10
4秒前
赘婿应助小小莫采纳,获得10
4秒前
隐形曼青应助jj采纳,获得10
4秒前
5秒前
张志超完成签到,获得积分20
5秒前
何白发布了新的文献求助10
5秒前
有机分子笼完成签到,获得积分10
6秒前
个性的觅波完成签到,获得积分10
6秒前
威武的访梦完成签到,获得积分10
6秒前
浮游应助ZNX采纳,获得10
6秒前
6秒前
lingling发布了新的文献求助10
6秒前
开放明雪发布了新的文献求助10
6秒前
在水一方应助翻翻CHEN采纳,获得10
6秒前
Lune7完成签到,获得积分10
7秒前
林爱桃123发布了新的文献求助20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467386
求助须知:如何正确求助?哪些是违规求助? 4571127
关于积分的说明 14328830
捐赠科研通 4497699
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452910
关于科研通互助平台的介绍 1427654