范德瓦尔斯力
Dirac(视频压缩格式)
半金属
费米能量
石墨烯
凝聚态物理
物理
量子力学
分子
电子
中微子
带隙
作者
Maxim Bykov,Timofey Fedotenko,Stella Chariton,Dominique Laniel,Konstantin Glazyrin,Michael Hanfland,Jesse S. Smith,Vitali B. Prakapenka,Mohammad F. Mahmood,Alexander F. Goncharov,Alena V. Ponomareva,Ferenc Tasnádi,Alexei I. Abrikosov,Talha Bin Masood,Ingrid Hotz,А. Н. Руденко,Mikhail I. Katsnelson,Natalia Dubrovinskaia,Leonid Dubrovinsky,Igor A. Abrikosov
标识
DOI:10.1103/physrevlett.126.175501
摘要
High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN_{4}. A triclinic phase of beryllium tetranitride tr-BeN_{4} was synthesized from elements at ∼85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN_{4} layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated π systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN_{4} layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN_{4} layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
科研通智能强力驱动
Strongly Powered by AbleSci AI