Anomaly Detection With Bidirectional Consistency in Videos

过度拟合 计算机科学 异常检测 推论 人工智能 水准点(测量) 正规化(语言学) 机器学习 模式识别(心理学) 一致性(知识库) 数据挖掘 人工神经网络 大地测量学 地理
作者
Zhiwen Fang,Jiafei Liang,Joey Tianyi Zhou,Yang Xiao,Feng Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1079-1092 被引量:39
标识
DOI:10.1109/tnnls.2020.3039899
摘要

The core component of most anomaly detectors is a self-supervised model, tasked with modeling patterns included in training samples and detecting unexpected patterns as the anomalies in testing samples. To cope with normal patterns, this model is typically trained with reconstruction constraints. However, the model has the risk of overfitting to training samples and being sensitive to hard normal patterns in the inference phase, which results in irregular responses at normal frames. To address this problem, we formulate anomaly detection as a mutual supervision problem. Due to collaborative training, the complementary information of mutual learning can alleviate the aforementioned problem. Based on this motivation, a SIamese generative network (SIGnet), including two subnetworks with the same architecture, is proposed to simultaneously model the patterns of the forward and backward frames. During training, in addition to traditional constraints on improving the reconstruction performance, a bidirectional consistency loss based on the forward and backward views is designed as the regularization term to improve the generalization ability of the model. Moreover, we introduce a consistency-based evaluation criterion to achieve stable scores at the normal frames, which will benefit detecting anomalies with fluctuant scores in the inference phase. The results on several challenging benchmark data sets demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助zzzzz采纳,获得10
1秒前
wayne完成签到,获得积分10
1秒前
simonwish发布了新的文献求助10
2秒前
jj发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
三六九发布了新的文献求助10
3秒前
cheer发布了新的文献求助10
3秒前
Leung完成签到,获得积分10
5秒前
和谐书雪关注了科研通微信公众号
6秒前
所所应助帮我顺利毕业采纳,获得10
6秒前
6秒前
6秒前
天想月发布了新的文献求助10
6秒前
嬛嬛发布了新的文献求助10
6秒前
6秒前
7秒前
刻苦黎云完成签到,获得积分10
7秒前
科研通AI5应助vanking采纳,获得10
7秒前
8秒前
犇骉完成签到,获得积分10
8秒前
mingking完成签到,获得积分10
8秒前
Hello应助敬老院N号采纳,获得10
9秒前
大个应助敬老院N号采纳,获得10
9秒前
慕青应助敬老院N号采纳,获得10
9秒前
斯文败类应助敬老院N号采纳,获得10
9秒前
10秒前
ding应助jj采纳,获得10
10秒前
重要钥匙发布了新的文献求助30
10秒前
zzzzz完成签到,获得积分10
10秒前
Lucy完成签到,获得积分10
11秒前
SunnyZhou发布了新的文献求助10
12秒前
12秒前
simonwish完成签到,获得积分10
13秒前
少生气发布了新的文献求助10
13秒前
hp发布了新的文献求助10
13秒前
XHL发布了新的文献求助10
14秒前
大模型应助DFS采纳,获得10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748398
求助须知:如何正确求助?哪些是违规求助? 3291329
关于积分的说明 10072748
捐赠科研通 3006983
什么是DOI,文献DOI怎么找? 1651482
邀请新用户注册赠送积分活动 786390
科研通“疑难数据库(出版商)”最低求助积分说明 751676