化学
区域选择性
烯烃
有机化学
氧化还原
组合化学
催化作用
作者
Tao Yang,Yi Jiang,Yixin Luo,Joel Jun Han Lim,Yu Lan,Ming Joo Koh
摘要
Multicomponent catalytic processes that can generate multiple C(sp3)-C(sp3) bonds in a single step under mild conditions, particularly those that employ inexpensive catalysts and substrates, are highly sought-after in chemistry research for complex molecule synthesis. Here, we disclose an efficient Ni-catalyzed reductive protocol that chemoselectively merges alkenyl amides with two different aliphatic electrophiles. Starting materials are readily accessible from stable and abundant feedstock, and products are furnished in up to >98:2 regioisomeric ratios. The present strategy eliminates the use of sensitive organometallic reagents, tolerates a wide array of complex functionalities, and enables regiodivergent addition of two primary alkyl groups bearing similar electronic and steric attributes across aliphatic C═C bonds with exquisite control of site selectivity. Utility is underscored by the concise synthesis of bioactive compounds and postreaction functionalizations leading to structurally diverse scaffolds. DFT studies revealed that the regiochemical outcome originates from the orthogonal reactivity and chemoselectivity profiles of in situ generated organonickel species.
科研通智能强力驱动
Strongly Powered by AbleSci AI