作者
Guangyi Wang,Wanwei Jian,Xiaoping Cen,Lijuan Zhang,Hui Guo,Zaiyi Liu,Changhong Liang,Wu Zhou
摘要
Rationale and Objectives To investigate the value of diffusion-weighted magnetic resonance imaging for the prediction of microvascular invasion (MVI) of Hepatocellular Carcinoma (HCC) using Convolutional Neural Networks (CNN). Material and methods This study was approved by the local institutional review board and the patients’ informed consent was waived. Consecutive 97 subjects with 100 HCCs from July 2012 to October 2018 with surgical resection were retrieved. All subjects with diffusion-weighted imaging (DWI) examinations were performed with single-shot echo-planar imaging in a breath-hold routine. DWI parameters were three b values of 0,100,600 sec/mm2. First, apparent diffusion coefficients (ADC) images were computed by mono-exponentially fitting the three b-value points. Then, multiple 2D axial patches (28 × 28) of HCCs from b0, b100, b600, and ADC images were extracted to increase the dataset for training the CNN model. Finally, the fusion of deep features derived from three b value images and ADC was conducted based on the CNN model for MVI prediction. The data set was split into the training set (60 HCCs) and the independent test set (40 HCCs). The output probability of the deep learning model in the MVI prediction of HCCs was assessed by the independent student's t-test for data following a normal distribution and Mann-Whitney U test for data violating the normal distribution. Receiver operating characteristic curve and area under the curve (AUC) were also used to assess the performance for MVI prediction of HCCs in the fixed test set. Results Deep features in b600 images yielded better performance (AUC = 0.74, p = 0.004) for MVI prediction than b0 (AUC = 0.69, p = 0.023) and b100 (AUC = 0.734, p = 0.011). Comparatively, deep features in the ADC map obtained lower performance (AUC = 0.71, p = 0.012) than that of the higher b value images (b600) for MVI prediction. Furthermore, the fusion of deep features from the b0, b100, b600, and ADC images yielded the best results (AUC = 0.79, p = 0.002) for MVI prediction. Conclusion Fusion of deep features derived from DWI images concerning the three b-value images and the ADC image yields better performance for MVI prediction. To investigate the value of diffusion-weighted magnetic resonance imaging for the prediction of microvascular invasion (MVI) of Hepatocellular Carcinoma (HCC) using Convolutional Neural Networks (CNN). This study was approved by the local institutional review board and the patients’ informed consent was waived. Consecutive 97 subjects with 100 HCCs from July 2012 to October 2018 with surgical resection were retrieved. All subjects with diffusion-weighted imaging (DWI) examinations were performed with single-shot echo-planar imaging in a breath-hold routine. DWI parameters were three b values of 0,100,600 sec/mm2. First, apparent diffusion coefficients (ADC) images were computed by mono-exponentially fitting the three b-value points. Then, multiple 2D axial patches (28 × 28) of HCCs from b0, b100, b600, and ADC images were extracted to increase the dataset for training the CNN model. Finally, the fusion of deep features derived from three b value images and ADC was conducted based on the CNN model for MVI prediction. The data set was split into the training set (60 HCCs) and the independent test set (40 HCCs). The output probability of the deep learning model in the MVI prediction of HCCs was assessed by the independent student's t-test for data following a normal distribution and Mann-Whitney U test for data violating the normal distribution. Receiver operating characteristic curve and area under the curve (AUC) were also used to assess the performance for MVI prediction of HCCs in the fixed test set. Deep features in b600 images yielded better performance (AUC = 0.74, p = 0.004) for MVI prediction than b0 (AUC = 0.69, p = 0.023) and b100 (AUC = 0.734, p = 0.011). Comparatively, deep features in the ADC map obtained lower performance (AUC = 0.71, p = 0.012) than that of the higher b value images (b600) for MVI prediction. Furthermore, the fusion of deep features from the b0, b100, b600, and ADC images yielded the best results (AUC = 0.79, p = 0.002) for MVI prediction. Fusion of deep features derived from DWI images concerning the three b-value images and the ADC image yields better performance for MVI prediction.