Prediction of Microvascular Invasion of Hepatocellular Carcinoma Based on Preoperative Diffusion-Weighted MR Using Deep Learning

肝细胞癌 磁共振成像 磁共振弥散成像 医学 人工智能 肿瘤分级 放射科 计算机科学 癌症 内科学
作者
Guangyi Wang,Wanwei Jian,Xiaoping Cen,Lijuan Zhang,Hui Guo,Zaiyi Liu,Changhong Liang,Wu Zhou
出处
期刊:Academic Radiology [Elsevier]
卷期号:28: S118-S127 被引量:33
标识
DOI:10.1016/j.acra.2020.11.014
摘要

Rationale and Objectives To investigate the value of diffusion-weighted magnetic resonance imaging for the prediction of microvascular invasion (MVI) of Hepatocellular Carcinoma (HCC) using Convolutional Neural Networks (CNN). Material and methods This study was approved by the local institutional review board and the patients’ informed consent was waived. Consecutive 97 subjects with 100 HCCs from July 2012 to October 2018 with surgical resection were retrieved. All subjects with diffusion-weighted imaging (DWI) examinations were performed with single-shot echo-planar imaging in a breath-hold routine. DWI parameters were three b values of 0,100,600 sec/mm2. First, apparent diffusion coefficients (ADC) images were computed by mono-exponentially fitting the three b-value points. Then, multiple 2D axial patches (28 × 28) of HCCs from b0, b100, b600, and ADC images were extracted to increase the dataset for training the CNN model. Finally, the fusion of deep features derived from three b value images and ADC was conducted based on the CNN model for MVI prediction. The data set was split into the training set (60 HCCs) and the independent test set (40 HCCs). The output probability of the deep learning model in the MVI prediction of HCCs was assessed by the independent student's t-test for data following a normal distribution and Mann-Whitney U test for data violating the normal distribution. Receiver operating characteristic curve and area under the curve (AUC) were also used to assess the performance for MVI prediction of HCCs in the fixed test set. Results Deep features in b600 images yielded better performance (AUC = 0.74, p = 0.004) for MVI prediction than b0 (AUC = 0.69, p = 0.023) and b100 (AUC = 0.734, p = 0.011). Comparatively, deep features in the ADC map obtained lower performance (AUC = 0.71, p = 0.012) than that of the higher b value images (b600) for MVI prediction. Furthermore, the fusion of deep features from the b0, b100, b600, and ADC images yielded the best results (AUC = 0.79, p = 0.002) for MVI prediction. Conclusion Fusion of deep features derived from DWI images concerning the three b-value images and the ADC image yields better performance for MVI prediction. To investigate the value of diffusion-weighted magnetic resonance imaging for the prediction of microvascular invasion (MVI) of Hepatocellular Carcinoma (HCC) using Convolutional Neural Networks (CNN). This study was approved by the local institutional review board and the patients’ informed consent was waived. Consecutive 97 subjects with 100 HCCs from July 2012 to October 2018 with surgical resection were retrieved. All subjects with diffusion-weighted imaging (DWI) examinations were performed with single-shot echo-planar imaging in a breath-hold routine. DWI parameters were three b values of 0,100,600 sec/mm2. First, apparent diffusion coefficients (ADC) images were computed by mono-exponentially fitting the three b-value points. Then, multiple 2D axial patches (28 × 28) of HCCs from b0, b100, b600, and ADC images were extracted to increase the dataset for training the CNN model. Finally, the fusion of deep features derived from three b value images and ADC was conducted based on the CNN model for MVI prediction. The data set was split into the training set (60 HCCs) and the independent test set (40 HCCs). The output probability of the deep learning model in the MVI prediction of HCCs was assessed by the independent student's t-test for data following a normal distribution and Mann-Whitney U test for data violating the normal distribution. Receiver operating characteristic curve and area under the curve (AUC) were also used to assess the performance for MVI prediction of HCCs in the fixed test set. Deep features in b600 images yielded better performance (AUC = 0.74, p = 0.004) for MVI prediction than b0 (AUC = 0.69, p = 0.023) and b100 (AUC = 0.734, p = 0.011). Comparatively, deep features in the ADC map obtained lower performance (AUC = 0.71, p = 0.012) than that of the higher b value images (b600) for MVI prediction. Furthermore, the fusion of deep features from the b0, b100, b600, and ADC images yielded the best results (AUC = 0.79, p = 0.002) for MVI prediction. Fusion of deep features derived from DWI images concerning the three b-value images and the ADC image yields better performance for MVI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狂野的元容完成签到,获得积分20
刚刚
刚刚
piaopiao完成签到,获得积分10
1秒前
AAA发布了新的文献求助10
2秒前
含蓄戾完成签到,获得积分10
2秒前
子非鱼完成签到,获得积分10
2秒前
2秒前
YH完成签到,获得积分10
3秒前
萝卜青菜应助不白干采纳,获得30
3秒前
专注的季节完成签到,获得积分10
3秒前
大力翠丝发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
5秒前
齐琪发布了新的文献求助10
6秒前
7秒前
狂犬喵发布了新的文献求助10
7秒前
7秒前
ah_junlei完成签到,获得积分10
8秒前
李健应助Cindy采纳,获得10
9秒前
9秒前
10秒前
剑来不来完成签到,获得积分10
12秒前
He完成签到 ,获得积分10
12秒前
施旭佳完成签到,获得积分10
14秒前
12545完成签到,获得积分10
15秒前
16秒前
浮游应助狂犬喵采纳,获得10
16秒前
平淡的井完成签到 ,获得积分10
16秒前
16秒前
16秒前
英姑应助SHASHA采纳,获得10
16秒前
18秒前
18秒前
19秒前
19秒前
淡淡天空关注了科研通微信公众号
20秒前
20秒前
王不留行完成签到,获得积分10
20秒前
21秒前
777发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483