颗粒过滤器
同时定位和映射
重力仪
水下
卡尔曼滤波器
航程(航空)
计算机科学
扩展卡尔曼滤波器
公制(单位)
遥控水下航行器
滤波器(信号处理)
人工智能
计算机视觉
控制理论(社会学)
移动机器人
工程类
航空航天工程
地理
机器人
控制(管理)
考古
石油工程
套管
运营管理
作者
Parth Pasnani,Mae Seto,J. Gu
出处
期刊:Systems, Man and Cybernetics
日期:2020-10-11
被引量:2
标识
DOI:10.1109/smc42975.2020.9282989
摘要
This paper reports on work to assess the feasibility of gravity-based long range underwater navigation and localization. As a first step, this is explored in simulations with RAO-Blackwellized particle filter simultaneous localization and mapping (SLAM). When implemented on an autonomous underwater vehicle it can operate submerged for extended periods without the use of an active sensor, thus widening the variety of AUV missions. Additionally, this work applies information theory to navigate through a region such that the SLAM data association, and thus the localization, performance is improved. The results also indicate that characteristic values for a region can be used as a SLAM metric for the region. Combining the characteristic value with information theory techniques improves the localization performance at extended ranges and is a first step towards long range underwater localization using gravimeters. Future work will optimize the particle filter, explore more sophisticated loop closures as well as hardware-in-the loop tests.
科研通智能强力驱动
Strongly Powered by AbleSci AI