纳米线
材料科学
铁电性
等温过程
凝聚态物理
绝热过程
极化(电化学)
温度梯度
大气温度范围
电热效应
相变
光电子学
纳米技术
热力学
电介质
物理
物理化学
化学
量子力学
作者
Le Van Lich,Ngoc-Lu Vu,Minh‐Tan Ha,Tinh Quoc Bui,Lê Văn Tuấn,Trong‐Giang Nguyen,Van‐Hai Dinh
摘要
We report on numerical investigation of the electrocaloric effect, an important physical phenomenon in compositionally graded ferroelectric (CGFE) nanowires made of Pb(1−x)SrxTiO3 whose material compositions spatially vary along the longitudinal direction of nanowires. In this study, all numerical evidences are demonstrated through the phase field model based on the Ginzburg–Landau theory. Here, the change of polarization with temperature can be tailored by controlling the gradient of material compositions in CGFE nanowires. The isothermal entropy and adiabatic temperature changes are enhanced with an increasing compositional gradient in CGFE nanowires. The electrocaloric effect is found to have high magnitude near room temperature in CGFE nanowires of PbTiO3 (top surface)/SrTiO3 (bottom surface), which is much larger than that in homogeneous ferroelectric nanowire with the same average material composition. In addition, the high electrocaloric effect in CGFE nanowires of PbTiO3/SrTiO3 is achieved in a wide range near room temperature. We also discuss the potential of CGFE nanowires for electrocaloric cooling applications, and more importantly, this work, in essence, opens a new route to enhance the electrocaloric properties of ferroelectric nanowires near room temperature by controlling the gradient of material compositions.
科研通智能强力驱动
Strongly Powered by AbleSci AI