A new classification method of ancient Chinese ceramics based on machine learning and component analysis

马氏距离 随机森林 人工智能 样品(材料) 相似性(几何) 陶瓷 计算机科学 科恩卡帕 数学 模式识别(心理学) 机器学习 材料科学 物理 冶金 图像(数学) 热力学
作者
Heyang Sun,Miao Liu,Li Li,Lingtong Yan,Yue Zhou,Xiangqian Feng
出处
期刊:Ceramics International [Elsevier]
卷期号:46 (6): 8104-8110 被引量:24
标识
DOI:10.1016/j.ceramint.2019.12.037
摘要

Ancient Chinese celadon is sought after all over the world for practical and artistic values. The study of ancient celadon is of great significance for understanding the cultural exchange, of which the classification of ancient celadon is an important part. The goal of this work was to establish a reliable celadon classification model based on EDXRF, machine learning algorithm and Mahalanobis distance. The data set for training machine learning models is constructed of 12 components in the ceramic body and glaze, which are measured by EDXRF. Comparing the predicted results of four machine learning models, the Random forest algorithm performed best on all evaluation indicators. Therefore, the Random forest was the most suitable algorithm for celadon classification with an average accuracy of 96.41% and a Kappa coefficient of 0.985. The contents of the chemical compositions of the sample were determined to be within the corresponding composition ranges of the predicted category. The chemical compositions with greater influence in identifying the categories of ancient ceramics in Random forest were chosen as the characteristic parameters. The general rules of the Mahalanobis distance from the sample to the category center were summarized and used to describe the similarity between the sample and the predicted category. The celadon classification model established by combining these two methods can make a more specific and accurate prediction. The celadon classification model was also adopted to predict the categories of samples excavated from the Jizhou kiln and Chuzhou site. The excellent prediction capability of the model was verified by comparing results with the corresponding background information of samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luckyyhy发布了新的文献求助10
刚刚
刚刚
风雅发布了新的文献求助10
刚刚
传奇3应助一方通行采纳,获得10
刚刚
刚刚
1秒前
羊六七发布了新的文献求助20
1秒前
cr123发布了新的文献求助10
1秒前
杜瑞豪完成签到,获得积分10
1秒前
在水一方应助英勇映波采纳,获得10
2秒前
无限的千琴完成签到,获得积分10
2秒前
shan完成签到,获得积分20
2秒前
昌升完成签到,获得积分20
2秒前
易大师完成签到,获得积分10
2秒前
自由迎曼发布了新的文献求助10
3秒前
3秒前
3秒前
aaaaaa发布了新的文献求助10
4秒前
Y1417完成签到,获得积分20
4秒前
浮游应助妮宝采纳,获得10
4秒前
y1628521397完成签到 ,获得积分10
4秒前
戴昕东发布了新的文献求助10
5秒前
5秒前
sail发布了新的文献求助10
5秒前
顺顺顺顺完成签到,获得积分10
5秒前
科研通AI6应助Linda采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
小立发布了新的文献求助10
6秒前
赘婿应助臻灏采纳,获得10
6秒前
6秒前
大鹅完成签到,获得积分10
6秒前
单薄的钢笔完成签到,获得积分10
6秒前
7秒前
7秒前
happy完成签到,获得积分10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688