A new classification method of ancient Chinese ceramics based on machine learning and component analysis

马氏距离 随机森林 人工智能 样品(材料) 相似性(几何) 陶瓷 计算机科学 科恩卡帕 数学 模式识别(心理学) 机器学习 材料科学 物理 冶金 图像(数学) 热力学
作者
Heyang Sun,Miao Liu,Li Li,Lingtong Yan,Yue Zhou,Xiangqian Feng
出处
期刊:Ceramics International [Elsevier BV]
卷期号:46 (6): 8104-8110 被引量:24
标识
DOI:10.1016/j.ceramint.2019.12.037
摘要

Ancient Chinese celadon is sought after all over the world for practical and artistic values. The study of ancient celadon is of great significance for understanding the cultural exchange, of which the classification of ancient celadon is an important part. The goal of this work was to establish a reliable celadon classification model based on EDXRF, machine learning algorithm and Mahalanobis distance. The data set for training machine learning models is constructed of 12 components in the ceramic body and glaze, which are measured by EDXRF. Comparing the predicted results of four machine learning models, the Random forest algorithm performed best on all evaluation indicators. Therefore, the Random forest was the most suitable algorithm for celadon classification with an average accuracy of 96.41% and a Kappa coefficient of 0.985. The contents of the chemical compositions of the sample were determined to be within the corresponding composition ranges of the predicted category. The chemical compositions with greater influence in identifying the categories of ancient ceramics in Random forest were chosen as the characteristic parameters. The general rules of the Mahalanobis distance from the sample to the category center were summarized and used to describe the similarity between the sample and the predicted category. The celadon classification model established by combining these two methods can make a more specific and accurate prediction. The celadon classification model was also adopted to predict the categories of samples excavated from the Jizhou kiln and Chuzhou site. The excellent prediction capability of the model was verified by comparing results with the corresponding background information of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默认用户名完成签到 ,获得积分10
2秒前
4秒前
科研废物完成签到 ,获得积分10
5秒前
李爱国应助火龙果采纳,获得10
6秒前
fdawn完成签到 ,获得积分10
7秒前
8秒前
10秒前
11秒前
张张完成签到,获得积分20
13秒前
14秒前
万能图书馆应助zxh123采纳,获得10
15秒前
123发布了新的文献求助10
16秒前
CodeCraft应助Leoniko采纳,获得10
16秒前
小灰灰完成签到,获得积分10
16秒前
16秒前
16秒前
18秒前
19秒前
宋鹏浩发布了新的文献求助10
19秒前
20秒前
22秒前
22秒前
23秒前
公孙世往发布了新的文献求助10
23秒前
Lsy完成签到,获得积分10
24秒前
火龙果发布了新的文献求助10
25秒前
Leoniko完成签到,获得积分10
25秒前
FashionBoy应助张张采纳,获得10
27秒前
bb完成签到,获得积分10
27秒前
zxh123发布了新的文献求助10
28秒前
水水完成签到,获得积分10
28秒前
曾经的帅哥完成签到,获得积分10
29秒前
YF是杨芳完成签到 ,获得积分10
29秒前
鱼蛋丸子完成签到,获得积分10
30秒前
Ava应助123采纳,获得10
31秒前
Milk关注了科研通微信公众号
31秒前
火龙果完成签到,获得积分10
34秒前
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388