A new classification method of ancient Chinese ceramics based on machine learning and component analysis

马氏距离 随机森林 人工智能 样品(材料) 相似性(几何) 陶瓷 计算机科学 科恩卡帕 数学 模式识别(心理学) 机器学习 材料科学 物理 冶金 图像(数学) 热力学
作者
Heyang Sun,Miao Liu,Li Li,Lingtong Yan,Yue Zhou,Xiangqian Feng
出处
期刊:Ceramics International [Elsevier]
卷期号:46 (6): 8104-8110 被引量:24
标识
DOI:10.1016/j.ceramint.2019.12.037
摘要

Ancient Chinese celadon is sought after all over the world for practical and artistic values. The study of ancient celadon is of great significance for understanding the cultural exchange, of which the classification of ancient celadon is an important part. The goal of this work was to establish a reliable celadon classification model based on EDXRF, machine learning algorithm and Mahalanobis distance. The data set for training machine learning models is constructed of 12 components in the ceramic body and glaze, which are measured by EDXRF. Comparing the predicted results of four machine learning models, the Random forest algorithm performed best on all evaluation indicators. Therefore, the Random forest was the most suitable algorithm for celadon classification with an average accuracy of 96.41% and a Kappa coefficient of 0.985. The contents of the chemical compositions of the sample were determined to be within the corresponding composition ranges of the predicted category. The chemical compositions with greater influence in identifying the categories of ancient ceramics in Random forest were chosen as the characteristic parameters. The general rules of the Mahalanobis distance from the sample to the category center were summarized and used to describe the similarity between the sample and the predicted category. The celadon classification model established by combining these two methods can make a more specific and accurate prediction. The celadon classification model was also adopted to predict the categories of samples excavated from the Jizhou kiln and Chuzhou site. The excellent prediction capability of the model was verified by comparing results with the corresponding background information of samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助YoungLee采纳,获得20
刚刚
无风完成签到,获得积分10
刚刚
好名字发布了新的文献求助10
1秒前
1秒前
000发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
绵绵球发布了新的文献求助10
3秒前
3秒前
3秒前
大胆芯发布了新的文献求助10
3秒前
3秒前
所所应助丁蕾采纳,获得10
4秒前
4秒前
bin发布了新的文献求助10
4秒前
Aurora完成签到,获得积分10
5秒前
6秒前
汉堡包应助ye采纳,获得10
6秒前
132发布了新的文献求助10
6秒前
牛肉mianbo发布了新的文献求助10
6秒前
xxf发布了新的文献求助10
6秒前
隐形曼青应助xiaomage采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
小丸子的樱桃红完成签到,获得积分10
9秒前
邱文县发布了新的文献求助10
9秒前
Mao关闭了Mao文献求助
9秒前
小郭完成签到,获得积分10
9秒前
jzt12138发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
FranklinQaQ完成签到,获得积分10
11秒前
11秒前
三莫莫莫发布了新的文献求助20
11秒前
大模型应助荒林采纳,获得30
11秒前
尔舟行发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667