A new classification method of ancient Chinese ceramics based on machine learning and component analysis

马氏距离 随机森林 人工智能 样品(材料) 相似性(几何) 陶瓷 计算机科学 科恩卡帕 数学 模式识别(心理学) 机器学习 材料科学 物理 冶金 图像(数学) 热力学
作者
Heyang Sun,Miao Liu,Li Li,Lingtong Yan,Yue Zhou,Xiangqian Feng
出处
期刊:Ceramics International [Elsevier]
卷期号:46 (6): 8104-8110 被引量:24
标识
DOI:10.1016/j.ceramint.2019.12.037
摘要

Ancient Chinese celadon is sought after all over the world for practical and artistic values. The study of ancient celadon is of great significance for understanding the cultural exchange, of which the classification of ancient celadon is an important part. The goal of this work was to establish a reliable celadon classification model based on EDXRF, machine learning algorithm and Mahalanobis distance. The data set for training machine learning models is constructed of 12 components in the ceramic body and glaze, which are measured by EDXRF. Comparing the predicted results of four machine learning models, the Random forest algorithm performed best on all evaluation indicators. Therefore, the Random forest was the most suitable algorithm for celadon classification with an average accuracy of 96.41% and a Kappa coefficient of 0.985. The contents of the chemical compositions of the sample were determined to be within the corresponding composition ranges of the predicted category. The chemical compositions with greater influence in identifying the categories of ancient ceramics in Random forest were chosen as the characteristic parameters. The general rules of the Mahalanobis distance from the sample to the category center were summarized and used to describe the similarity between the sample and the predicted category. The celadon classification model established by combining these two methods can make a more specific and accurate prediction. The celadon classification model was also adopted to predict the categories of samples excavated from the Jizhou kiln and Chuzhou site. The excellent prediction capability of the model was verified by comparing results with the corresponding background information of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
issl发布了新的文献求助10
1秒前
lin发布了新的文献求助30
2秒前
jiangjiang完成签到 ,获得积分10
2秒前
香蕉觅云应助亦屿森采纳,获得10
3秒前
XC发布了新的文献求助10
5秒前
10秒前
FashionBoy应助wangayting采纳,获得30
11秒前
雨前知了完成签到,获得积分10
12秒前
13秒前
13秒前
天啊发布了新的文献求助10
13秒前
老肖应助W~舞采纳,获得10
13秒前
小二郎应助热心访风采纳,获得10
13秒前
15秒前
Enuo发布了新的文献求助10
17秒前
画风湖湘卷完成签到,获得积分10
17秒前
18秒前
Ash发布了新的文献求助10
19秒前
19秒前
21秒前
21秒前
21秒前
亦屿森发布了新的文献求助10
23秒前
Enuo完成签到,获得积分10
24秒前
Haucicy发布了新的文献求助10
24秒前
26秒前
26秒前
26秒前
liweiDr发布了新的文献求助10
27秒前
Gxt发布了新的文献求助10
27秒前
xjcy应助XC采纳,获得10
27秒前
bkagyin应助阔达的元柏采纳,获得20
27秒前
xingcheng完成签到,获得积分10
28秒前
29秒前
chenling发布了新的文献求助10
29秒前
wanci应助单纯的凡旋采纳,获得10
30秒前
30秒前
Tree完成签到 ,获得积分10
30秒前
31秒前
郭凯丽发布了新的文献求助10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139211
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7794004
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301236
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109