Faster Randomized Block Kaczmarz Algorithms

数学 算法 收敛速度 预处理程序 块(置换群论) 线性系统 趋同(经济学) 数学优化 迭代法 计算机科学 组合数学 计算机网络 经济增长 频道(广播) 数学分析 经济
作者
Ion Necoara
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:40 (4): 1425-1452 被引量:100
标识
DOI:10.1137/19m1251643
摘要

The Kaczmarz algorithm is a simple iterative scheme for solving consistent linear systems. At each step, the method projects the current iterate onto the solution space of a single constraint. Hence, it requires low cost per iteration and storage, and it has a linear rate of convergence. Distributed implementations of Kaczmarz have recently become the de facto architectural choice for large-scale linear systems. Therefore, in this paper we develop a family of randomized block Kaczmarz algorithms that uses at each step a subset of the constraints and extrapolated stepsizes, and can be deployed on distributed computing units. Our approach is based on several new ideas and tools, including stochastic selection rules for the blocks of rows, stochastic conditioning of linear systems, and novel strategies for designing extrapolated stepsizes. We prove that randomized block Kaczmarz algorithms converge linearly in expectation, with a rate depending on the geometric properties of the matrix and its submatrices and on the size of the blocks. Our convergence analysis reveals that the algorithm is most effective when it is given a good sampling of the rows into well-conditioned blocks. Besides providing a general framework for the design and analysis of randomized block Kaczmarz methods, our results resolve an open problem in the literature related to the theoretical understanding of observed practical efficiency of extrapolated block Kaczmarz methods. We also propose an accelerated block Kaczmarz scheme, that is, acceleration in the sense of Chebyshev semi-iterative methods, where the stepsize is chosen based on the roots of Chebyshev polynomials, and we derive convergence rates depending on the square root of the geometric properties of the matrix. Finally, numerical examples illustrate the benefits of the new algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听初珍发布了新的文献求助10
1秒前
qiqi发布了新的文献求助10
1秒前
3秒前
李念发布了新的文献求助10
3秒前
碧蓝帆布鞋完成签到,获得积分10
3秒前
Apricity完成签到,获得积分20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
研友_89mvO8发布了新的文献求助10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
含糊的慕凝完成签到 ,获得积分10
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
小小油应助科研通管家采纳,获得130
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI2S应助动听初珍采纳,获得10
7秒前
halo发布了新的文献求助10
8秒前
8秒前
研友_89mvO8完成签到,获得积分10
10秒前
阳光的丹雪完成签到,获得积分10
11秒前
11秒前
黄文龙发布了新的文献求助10
12秒前
12秒前
lixm发布了新的文献求助10
14秒前
vergegung关注了科研通微信公众号
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457