重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Faster Randomized Block Kaczmarz Algorithms

数学 算法 收敛速度 预处理程序 块(置换群论) 线性系统 趋同(经济学) 数学优化 迭代法 计算机科学 组合数学 计算机网络 经济增长 频道(广播) 数学分析 经济
作者
Ion Necoara
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:40 (4): 1425-1452 被引量:100
标识
DOI:10.1137/19m1251643
摘要

The Kaczmarz algorithm is a simple iterative scheme for solving consistent linear systems. At each step, the method projects the current iterate onto the solution space of a single constraint. Hence, it requires low cost per iteration and storage, and it has a linear rate of convergence. Distributed implementations of Kaczmarz have recently become the de facto architectural choice for large-scale linear systems. Therefore, in this paper we develop a family of randomized block Kaczmarz algorithms that uses at each step a subset of the constraints and extrapolated stepsizes, and can be deployed on distributed computing units. Our approach is based on several new ideas and tools, including stochastic selection rules for the blocks of rows, stochastic conditioning of linear systems, and novel strategies for designing extrapolated stepsizes. We prove that randomized block Kaczmarz algorithms converge linearly in expectation, with a rate depending on the geometric properties of the matrix and its submatrices and on the size of the blocks. Our convergence analysis reveals that the algorithm is most effective when it is given a good sampling of the rows into well-conditioned blocks. Besides providing a general framework for the design and analysis of randomized block Kaczmarz methods, our results resolve an open problem in the literature related to the theoretical understanding of observed practical efficiency of extrapolated block Kaczmarz methods. We also propose an accelerated block Kaczmarz scheme, that is, acceleration in the sense of Chebyshev semi-iterative methods, where the stepsize is chosen based on the roots of Chebyshev polynomials, and we derive convergence rates depending on the square root of the geometric properties of the matrix. Finally, numerical examples illustrate the benefits of the new algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许蹦跶完成签到,获得积分10
刚刚
Goolk关注了科研通微信公众号
1秒前
英俊的铭应助李周采纳,获得10
1秒前
榴莲奶黄包完成签到,获得积分10
1秒前
汪金完成签到,获得积分10
1秒前
纯真电源发布了新的文献求助10
1秒前
ding应助圈圈采纳,获得10
2秒前
天才关注了科研通微信公众号
2秒前
2秒前
orixero应助张铭娟采纳,获得10
2秒前
franken完成签到,获得积分10
2秒前
健忘之卉完成签到,获得积分10
2秒前
心悦臣服发布了新的文献求助30
3秒前
NexusExplorer应助余语羽采纳,获得10
3秒前
bxbxbx发布了新的文献求助10
3秒前
邵开山完成签到,获得积分10
3秒前
好旺发布了新的文献求助10
4秒前
4秒前
4秒前
zzyzz完成签到 ,获得积分10
4秒前
xiaojie发布了新的文献求助10
4秒前
5秒前
启原完成签到,获得积分10
6秒前
充电宝应助新火新茶采纳,获得10
6秒前
打打应助笑点低的以亦采纳,获得10
6秒前
望北发布了新的文献求助10
6秒前
uuu发布了新的文献求助10
6秒前
语芙发布了新的文献求助10
6秒前
酷波er应助求知采纳,获得10
7秒前
流飞发布了新的文献求助10
7秒前
7秒前
科目三应助小掰采纳,获得10
7秒前
bkagyin应助牛与马采纳,获得10
8秒前
Refuel发布了新的文献求助10
8秒前
painting发布了新的文献求助10
8秒前
8秒前
avalanche应助ZXD1989采纳,获得50
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567