Faster Randomized Block Kaczmarz Algorithms

数学 算法 收敛速度 预处理程序 块(置换群论) 线性系统 趋同(经济学) 数学优化 迭代法 计算机科学 组合数学 计算机网络 经济增长 频道(广播) 数学分析 经济
作者
Ion Necoara
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:40 (4): 1425-1452 被引量:100
标识
DOI:10.1137/19m1251643
摘要

The Kaczmarz algorithm is a simple iterative scheme for solving consistent linear systems. At each step, the method projects the current iterate onto the solution space of a single constraint. Hence, it requires low cost per iteration and storage, and it has a linear rate of convergence. Distributed implementations of Kaczmarz have recently become the de facto architectural choice for large-scale linear systems. Therefore, in this paper we develop a family of randomized block Kaczmarz algorithms that uses at each step a subset of the constraints and extrapolated stepsizes, and can be deployed on distributed computing units. Our approach is based on several new ideas and tools, including stochastic selection rules for the blocks of rows, stochastic conditioning of linear systems, and novel strategies for designing extrapolated stepsizes. We prove that randomized block Kaczmarz algorithms converge linearly in expectation, with a rate depending on the geometric properties of the matrix and its submatrices and on the size of the blocks. Our convergence analysis reveals that the algorithm is most effective when it is given a good sampling of the rows into well-conditioned blocks. Besides providing a general framework for the design and analysis of randomized block Kaczmarz methods, our results resolve an open problem in the literature related to the theoretical understanding of observed practical efficiency of extrapolated block Kaczmarz methods. We also propose an accelerated block Kaczmarz scheme, that is, acceleration in the sense of Chebyshev semi-iterative methods, where the stepsize is chosen based on the roots of Chebyshev polynomials, and we derive convergence rates depending on the square root of the geometric properties of the matrix. Finally, numerical examples illustrate the benefits of the new algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助无情颖采纳,获得10
刚刚
DG发布了新的文献求助10
刚刚
灼灼发布了新的文献求助10
1秒前
yuyu发布了新的文献求助10
1秒前
斯文败类应助LGX采纳,获得10
1秒前
桂桂完成签到,获得积分10
1秒前
2秒前
无花果应助典雅的俊驰采纳,获得10
2秒前
3秒前
3秒前
烟花应助SCurry3rain采纳,获得30
3秒前
完美世界应助闪闪的飞雪采纳,获得10
3秒前
yangsouth发布了新的文献求助10
4秒前
研友_85YNe8完成签到,获得积分10
4秒前
将夕发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
yyy完成签到 ,获得积分10
7秒前
DG完成签到,获得积分10
7秒前
chai发布了新的文献求助10
9秒前
9秒前
9秒前
yt发布了新的文献求助10
10秒前
五1232发布了新的文献求助10
10秒前
坦率的曲奇完成签到,获得积分10
10秒前
12秒前
13秒前
NOT发布了新的文献求助10
15秒前
16秒前
Archie发布了新的文献求助30
16秒前
平方完成签到,获得积分10
16秒前
cym完成签到,获得积分10
16秒前
Jin完成签到 ,获得积分10
17秒前
77完成签到 ,获得积分10
18秒前
shanshan发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656742
求助须知:如何正确求助?哪些是违规求助? 4805800
关于积分的说明 15077356
捐赠科研通 4814948
什么是DOI,文献DOI怎么找? 2576219
邀请新用户注册赠送积分活动 1531465
关于科研通互助平台的介绍 1490025