Faster Randomized Block Kaczmarz Algorithms

数学 算法 收敛速度 预处理程序 块(置换群论) 线性系统 趋同(经济学) 数学优化 迭代法 计算机科学 组合数学 计算机网络 经济增长 频道(广播) 数学分析 经济
作者
Ion Necoara
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:40 (4): 1425-1452 被引量:100
标识
DOI:10.1137/19m1251643
摘要

The Kaczmarz algorithm is a simple iterative scheme for solving consistent linear systems. At each step, the method projects the current iterate onto the solution space of a single constraint. Hence, it requires low cost per iteration and storage, and it has a linear rate of convergence. Distributed implementations of Kaczmarz have recently become the de facto architectural choice for large-scale linear systems. Therefore, in this paper we develop a family of randomized block Kaczmarz algorithms that uses at each step a subset of the constraints and extrapolated stepsizes, and can be deployed on distributed computing units. Our approach is based on several new ideas and tools, including stochastic selection rules for the blocks of rows, stochastic conditioning of linear systems, and novel strategies for designing extrapolated stepsizes. We prove that randomized block Kaczmarz algorithms converge linearly in expectation, with a rate depending on the geometric properties of the matrix and its submatrices and on the size of the blocks. Our convergence analysis reveals that the algorithm is most effective when it is given a good sampling of the rows into well-conditioned blocks. Besides providing a general framework for the design and analysis of randomized block Kaczmarz methods, our results resolve an open problem in the literature related to the theoretical understanding of observed practical efficiency of extrapolated block Kaczmarz methods. We also propose an accelerated block Kaczmarz scheme, that is, acceleration in the sense of Chebyshev semi-iterative methods, where the stepsize is chosen based on the roots of Chebyshev polynomials, and we derive convergence rates depending on the square root of the geometric properties of the matrix. Finally, numerical examples illustrate the benefits of the new algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yqcj455发布了新的文献求助10
刚刚
庞呵呵发布了新的文献求助10
刚刚
1秒前
烟花应助sjj采纳,获得10
1秒前
2秒前
科研通AI2S应助鲤鱼青雪采纳,获得10
3秒前
开放素完成签到 ,获得积分10
4秒前
ardejiang发布了新的文献求助10
5秒前
zzz应助lylyzhl采纳,获得10
5秒前
5秒前
superbanggg发布了新的文献求助10
6秒前
7秒前
YE发布了新的文献求助10
7秒前
依霏发布了新的文献求助10
7秒前
kangkang完成签到,获得积分10
8秒前
科研通AI2S应助漂泊1991采纳,获得10
8秒前
aaa完成签到,获得积分10
11秒前
11秒前
CipherSage应助Mr.g采纳,获得10
11秒前
哈比发布了新的文献求助10
12秒前
可爱的函函应助坦率初柔采纳,获得10
12秒前
11完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
大模型应助哈比采纳,获得10
18秒前
dyd发布了新的文献求助10
19秒前
顾矜应助xiaoxiao采纳,获得30
19秒前
小羊睡不着数什么完成签到 ,获得积分10
21秒前
搜集达人应助威武鸽子采纳,获得10
23秒前
23秒前
Mr.g发布了新的文献求助10
23秒前
旋转门发布了新的文献求助10
26秒前
脑洞疼应助狐狐采纳,获得30
27秒前
Tache发布了新的文献求助10
28秒前
彭于晏应助科研通管家采纳,获得10
29秒前
29秒前
Elephes应助科研通管家采纳,获得20
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919