Faster Randomized Block Kaczmarz Algorithms

数学 算法 收敛速度 预处理程序 块(置换群论) 线性系统 趋同(经济学) 数学优化 迭代法 计算机科学 组合数学 计算机网络 数学分析 频道(广播) 经济 经济增长
作者
Ion Necoara
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:40 (4): 1425-1452 被引量:100
标识
DOI:10.1137/19m1251643
摘要

The Kaczmarz algorithm is a simple iterative scheme for solving consistent linear systems. At each step, the method projects the current iterate onto the solution space of a single constraint. Hence, it requires low cost per iteration and storage, and it has a linear rate of convergence. Distributed implementations of Kaczmarz have recently become the de facto architectural choice for large-scale linear systems. Therefore, in this paper we develop a family of randomized block Kaczmarz algorithms that uses at each step a subset of the constraints and extrapolated stepsizes, and can be deployed on distributed computing units. Our approach is based on several new ideas and tools, including stochastic selection rules for the blocks of rows, stochastic conditioning of linear systems, and novel strategies for designing extrapolated stepsizes. We prove that randomized block Kaczmarz algorithms converge linearly in expectation, with a rate depending on the geometric properties of the matrix and its submatrices and on the size of the blocks. Our convergence analysis reveals that the algorithm is most effective when it is given a good sampling of the rows into well-conditioned blocks. Besides providing a general framework for the design and analysis of randomized block Kaczmarz methods, our results resolve an open problem in the literature related to the theoretical understanding of observed practical efficiency of extrapolated block Kaczmarz methods. We also propose an accelerated block Kaczmarz scheme, that is, acceleration in the sense of Chebyshev semi-iterative methods, where the stepsize is chosen based on the roots of Chebyshev polynomials, and we derive convergence rates depending on the square root of the geometric properties of the matrix. Finally, numerical examples illustrate the benefits of the new algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kasami发布了新的文献求助10
2秒前
2秒前
深情安青应助GLM采纳,获得10
3秒前
3秒前
华仔应助魔幻安筠采纳,获得10
3秒前
bliss完成签到,获得积分10
3秒前
左丘易梦完成签到,获得积分10
4秒前
4秒前
tang应助虚心的岩采纳,获得10
4秒前
苔原猫咪甜甜圈完成签到,获得积分10
4秒前
尹善冰完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
大圣来也发布了新的文献求助10
5秒前
在水一方应助11采纳,获得10
6秒前
6秒前
Wind应助愉快小猪采纳,获得10
7秒前
10086发布了新的文献求助10
7秒前
上官若男应助无心的月亮采纳,获得10
8秒前
aaa发布了新的文献求助10
8秒前
8秒前
8秒前
Alan发布了新的文献求助10
8秒前
得意黑发布了新的文献求助10
8秒前
Honghao完成签到,获得积分10
9秒前
stiger应助111采纳,获得50
9秒前
ppat5012发布了新的文献求助10
9秒前
zhangsf88完成签到,获得积分10
9秒前
ioii完成签到,获得积分10
9秒前
情怀应助JansonLin采纳,获得10
9秒前
左丘易梦发布了新的文献求助10
9秒前
9秒前
10秒前
hcy完成签到,获得积分10
10秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444