Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination

枝晶(数学) 材料科学 阳极 电解质 纳米技术 电极 化学 几何学 数学 物理化学
作者
Xinyue Zhang,Aoxuan Wang,Xingjiang Liu,Jiayan Luo
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (11): 3223-3232 被引量:408
标识
DOI:10.1021/acs.accounts.9b00437
摘要

ConspectusWith the increasing diversification of portable electronics and large-scale energy storage systems, conventional lithium-ion batteries (LIBs) with graphite anodes are now approaching their theoretical limits. Lithium metal, as the "Holy Grail" electrode for next-generation rechargeable batteries, is being revisited to meet the booming demand for high energy density electrodes due to its ultrahigh theoretical specific capacity and negative redox potential. Nevertheless, typical issues like notorious dendrite growth still hamper the bulk application of Li metal anodes. Dendrite growth renders increased surface area of the lithium metal, causing persistent depletion of the electrolyte and active materials, facilitating catastrophic failure of the battery, and even inducing fatal safety hazards. The consequences become more serious during operation at high current densities and over long cycling life. Therefore, it is urgent to suppress and even eliminate dendrite formation during the Li plating/stripping process.This Account highlights several innovative strategies for dendrite suppression, dendrite regulation, and dendrite elimination from the perspective of interface energy and bulk stresses. First, we review the fundamental mechanism of dendrite formation and growth in Li metal anodes. We show that the dendrite morphology could be substantially ameliorated, in theory, by homogenizing the electric field distribution, lowering the Li ion concentration gradient, and facilitating mechanical blocking. Next, we address the problem of dendrite suppression by applying two-dimensional (2D) materials to Li metal systems and preventing dendrite penetration through stress release and mechanical blocking. Graphene with a high specific area and vermiculite sheets (VSs) with a large physical rigidity were demonstrated to be efficacious in reinforcing Li anodes and polymer electrolytes separately. However, Li dendrite growth is a continuous process and remains inevitable with increasing current density and cycling life. Instead of suppressing dendrite growth, we focus on how to regulate homogeneous Li dendrite formation and growth. Dendrite regulation means to allow dendrite growth but take steps to transform it into Li with a smooth morphology. We introduce two main strategies to regulate Li growth: (i) guiding Li nucleation and (ii) controlling the Li growth pathways and directions. These processes greatly rely on the interface energy between the substrate and Li atoms. Elimination of the dendrites, which is the most formidable challenge for dendrite control, can also be achieved by dynamically engineering the force, such as deflecting the electric field by Lorentz force in a magnetic field, enhancing the integrated yield stress by the design of bulk nanostructured materials, and reducing the lateral Li diffusion barrier by a biomimetic co-deposition process.Solutions to the challenges of dendrite control in Li metal anodes can provide safe next-generation rechargeable lithium metal batteries that have a long cycling life. We also hope that our strategies presented in this Account can offer promise for other metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎嘤斯坦完成签到,获得积分10
1秒前
1秒前
sweetbearm应助潦草采纳,获得10
2秒前
sunsunsun发布了新的文献求助10
2秒前
酷波er应助Mars采纳,获得10
3秒前
迪士尼在逃后母完成签到,获得积分10
3秒前
3秒前
我是老大应助su采纳,获得10
4秒前
hhh发布了新的文献求助10
5秒前
6秒前
科研通AI5应助魏伯安采纳,获得10
7秒前
7秒前
神可馨完成签到 ,获得积分10
8秒前
Hangerli发布了新的文献求助20
8秒前
HealthyCH完成签到,获得积分10
8秒前
li完成签到,获得积分10
9秒前
10秒前
ononon发布了新的文献求助10
12秒前
12秒前
liu完成签到,获得积分10
14秒前
LWJ发布了新的文献求助10
15秒前
16秒前
大反应釜完成签到,获得积分10
16秒前
TT发布了新的文献求助10
19秒前
Jenny发布了新的文献求助10
21秒前
21秒前
完美凝竹发布了新的文献求助10
21秒前
我是站长才怪应助细腻沅采纳,获得10
22秒前
JG完成签到 ,获得积分10
22秒前
hhh完成签到,获得积分20
22秒前
科研通AI5应助想瘦的海豹采纳,获得10
23秒前
随性完成签到 ,获得积分10
23秒前
自由的信仰完成签到,获得积分10
24秒前
26秒前
27秒前
27秒前
夏夏发布了新的文献求助10
28秒前
打打应助Hangerli采纳,获得10
30秒前
完美凝竹完成签到,获得积分10
31秒前
zfzf0422发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824