正确性
惯性参考系
数学
人工神经网络
理论(学习稳定性)
转化(遗传学)
同步(交流)
模糊逻辑
李雅普诺夫函数
变量(数学)
不连续性分类
模糊控制系统
应用数学
控制理论(社会学)
算法
计算机科学
非线性系统
拓扑(电路)
数学分析
人工智能
控制(管理)
机器学习
物理
组合数学
基因
化学
量子力学
生物化学
作者
Fanchao Kong,Quanxin Zhu,Tingwen Huang
出处
期刊:IEEE Transactions on Fuzzy Systems
[Institute of Electrical and Electronics Engineers]
日期:2020-09-23
卷期号:29 (12): 3711-3722
被引量:136
标识
DOI:10.1109/tfuzz.2020.3026030
摘要
This article aims to analyze the fixed-time synchronization of a class of discontinuous fuzzy inertial neural networks with time-varying delays based on the new improved fixed-time stability lemmas. First of all, by using the generalized variable transformation and Filippov solution theory, the discontinuities of the considered neural system can be coped with, and the error system is established. By relaxing the conditions of the $C$ -regular Lyapunov function, two new fixed-time stability lemmas are proved via simple inequality techniques. The setting times are also estimated and are more accurate in comparison with the previous ones. Finally, one typical numerical example is carried out to verify the correctness and the advantages of the main results.
科研通智能强力驱动
Strongly Powered by AbleSci AI