已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge-Guided Multi-Label Few-Shot Learning for General Image Recognition

计算机科学 人工智能 利用 多标签分类 分类器(UML) 图形 语义学(计算机科学) 知识图 模式识别(心理学) 人工神经网络 依赖关系图 机器学习 理论计算机科学 计算机安全 程序设计语言
作者
Tianshui Chen,Liang Lin,Riquan Chen,Xiaolu Hui,Hefeng Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (3): 1371-1384 被引量:113
标识
DOI:10.1109/tpami.2020.3025814
摘要

Recognizing multiple labels of an image is a practical yet challenging task, and remarkable progress has been achieved by searching for semantic regions and exploiting label dependencies. However, current works utilize RNN/LSTM to implicitly capture sequential region/label dependencies, which cannot fully explore mutual interactions among the semantic regions/labels and do not explicitly integrate label co-occurrences. In addition, these works require large amounts of training samples for each category, and they are unable to generalize to novel categories with limited samples. To address these issues, we propose a knowledge-guided graph routing (KGGR) framework, which unifies prior knowledge of statistical label correlations with deep neural networks. The framework exploits prior knowledge to guide adaptive information propagation among different categories to facilitate multi-label analysis and reduce the dependency of training samples. Specifically, it first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence. Then, it introduces the label semantics to guide learning semantic-specific features to initialize the graph, and it exploits a graph propagation network to explore graph node interactions, enabling learning contextualized image feature representations. Moreover, we initialize each graph node with the classifier weights for the corresponding label and apply another propagation network to transfer node messages through the graph. In this way, it can facilitate exploiting the information of correlated labels to help train better classifiers, especially for labels with limited training samples. We conduct extensive experiments on the traditional multi-label image recognition (MLR) and multi-label few-shot learning (ML-FSL) tasks and show that our KGGR framework outperforms the current state-of-the-art methods by sizable margins on the public benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高贵书南完成签到,获得积分10
2秒前
占若完成签到,获得积分20
3秒前
恶恶么v发布了新的文献求助10
5秒前
我是老大应助夏爽2023采纳,获得10
6秒前
dingdingding完成签到,获得积分10
12秒前
z1jioyeah完成签到 ,获得积分10
13秒前
倔驴发布了新的文献求助10
15秒前
17秒前
17秒前
Guoyeye完成签到,获得积分10
18秒前
uranus完成签到,获得积分10
20秒前
21秒前
李新光完成签到 ,获得积分10
21秒前
21秒前
23秒前
qqesk发布了新的文献求助10
24秒前
子翱完成签到 ,获得积分10
27秒前
Akim应助絮语采纳,获得10
27秒前
27秒前
英俊的铭应助qqesk采纳,获得10
28秒前
28秒前
zifanqie完成签到 ,获得积分10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
29秒前
32秒前
夏爽2023发布了新的文献求助10
33秒前
35秒前
aprise完成签到 ,获得积分10
37秒前
无限的续完成签到 ,获得积分20
40秒前
Docgyj完成签到 ,获得积分10
43秒前
干净的秋柳完成签到,获得积分10
43秒前
46秒前
49秒前
美好乐松完成签到,获得积分0
51秒前
北极星发布了新的文献求助30
52秒前
占若发布了新的文献求助10
53秒前
zhvjdb发布了新的文献求助10
53秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139398
求助须知:如何正确求助?哪些是违规求助? 2790314
关于积分的说明 7794847
捐赠科研通 2446748
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141