血管生成
癌症研究
信号转导
癌变
缺氧诱导因子
生物
HIF1A型
缺氧(环境)
癌细胞
转移
癌症
细胞生物学
化学
基因
遗传学
有机化学
氧气
出处
期刊:American Journal of Health-system Pharmacy
[Oxford University Press]
日期:2020-10-05
卷期号:77 (24): 2064-2073
被引量:12
摘要
Abstract Purpose This article summarizes examples of current and emerging therapies that target the hypoxia and angiogenesis signaling pathways in the clear cell type of renal cell cancer (RCC), with an emphasis on the hypoxia signaling pathway. Summary Mammalian cells transduce signals of decreased oxygen to hypoxia inducible factor (HIF), an intracellular heterodimer that mediates the adaptation of normal and tumor cells to oxygen deprivation. HIF is frequently overexpressed in cancer cells and is involved in the transcriptional activation of many genes essential for cell invasion, migration, survival, and angiogenesis (including vascular endothelial growth factor [VEGF]). Moreover, HIF confers resistance to cytotoxic chemotherapy and radiation therapy and is associated with poor prognosis in patients with cancer. Blocking the activity of HIF inhibits the expression of VEGF and oncogenic pathways, resulting in the inhibition of tumor growth. Interestingly, activation of oncogenes and/or inactivation of tumor suppressor genes (eg, the gene encoding von Hippel-Lindau [VHL] tumor suppressor protein) can activate tumorigenesis even with normal levels of oxygen, providing support for the notion that the HIF-VHL-VEGF axis is amenable to targeted therapies for the treatment of RCC. This article highlights the current understanding of the hypoxia signaling pathway and its relevance to RCC development. Pharmacologic agents targeting the hypoxia and angiogenesis signaling pathways are discussed. Conclusion Development of novel therapeutic agents that target the hypoxia and angiogenesis signaling pathways holds promise in the management of metastatic clear cell RCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI