Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock

聚合物 聚酯纤维 生物塑料 原材料 纤维素乙醇 缩聚物 产量(工程) 纤维素 有机化学 化学工程 废物管理 化学 材料科学 复合材料 工程类
作者
Aniruddha Nag,Mohammad Asif Ali,Hideo Kawaguchi,S. Saito,Yukie Kawasaki,Shoko Miyazaki,Hirotoshi Kawamoto,Deddy Triyono Nugroho Adi,Kumiko Yoshihara,Shunsuke Masuo,Yohei Katsuyama,Akihiko Kondo,Chiaki Ogino,Naoki Takaya,Tatsuo Kaneko,Yasuo Ohnishi
出处
期刊:Advanced sustainable systems [Wiley]
卷期号:5 (1) 被引量:25
标识
DOI:10.1002/adsu.202000193
摘要

Abstract Production of bioplastics from renewable biological resources is a prerequisite for the development of a circular and sustainable society. Current bioplastics are mostly heat‐sensitive aliphatic polymers, requiring thermoresistant aromatic bioplastics. Herein, 3‐amino‐4‐hydroxybenzoic acid (AHBA) and 4‐aminobenzoic acid (ABA) are produced from kraft pulp, an inedible cellulosic feedstock, using metabolically engineered bacteria. AHBA is chemically converted to 3,4‐diaminobenzoic acid (DABA); subsequently, poly(2,5‐benzimidazole) is obtained by the polycondensation of DABA and processed into an ultrahigh thermoresistant film. The copolymerization of DABA with a small amount of ABA dramatically increases the degradation temperatures of the resulting films (over 740 °C) to yield the most thermoresistant plastic on record. Density functional theory calculations indicate that the incorporation of ABA strengthens the interchain hydrogen bonds between aromatic imidazole rings. Thus, an alternative organic molecular design is proposed for thermoresistant plastics without using heavy inorganics, although continuous aromatic heterocycles are widely considered ideal for polymer thermoresistance. This innovative macromolecular design increases thermoresistance and can be widely applied to well‐processable plastics for the production of lightweight materials and is expected to contribute to the development of a more sustainable society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助奋斗秋采纳,获得10
1秒前
Cloud完成签到 ,获得积分10
1秒前
千里发布了新的文献求助10
2秒前
Forty完成签到,获得积分20
2秒前
2秒前
脑洞疼应助结实涑采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
田様应助花卷采纳,获得10
5秒前
wanci应助就下载个文献采纳,获得10
5秒前
科研通AI5应助瑞秋采纳,获得10
5秒前
CodeCraft应助健忘泽洋采纳,获得10
5秒前
ygr发布了新的文献求助10
6秒前
6秒前
7秒前
做个有勇气的人完成签到,获得积分10
7秒前
科研通AI5应助木脑子采纳,获得30
7秒前
潇洒夏山完成签到,获得积分10
7秒前
小宋应助jy采纳,获得10
8秒前
8秒前
8秒前
8秒前
打打应助朝圣者采纳,获得10
8秒前
8秒前
凌云完成签到,获得积分10
8秒前
8秒前
zz发布了新的文献求助30
10秒前
黄坤发布了新的文献求助10
11秒前
慕青应助samara采纳,获得10
11秒前
香蕉觅云应助Cloud采纳,获得10
12秒前
12秒前
12秒前
13秒前
QRY完成签到,获得积分10
13秒前
852应助doctorLi采纳,获得10
13秒前
高大雁兰发布了新的文献求助10
13秒前
jingjun_Li发布了新的文献求助10
14秒前
瑞秋完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737