HPGAN: Hyperspectral Pansharpening Using 3-D Generative Adversarial Networks

全色胶片 计算机科学 高光谱成像 人工智能 图像分辨率 模式识别(心理学) 图像(数学) 约束(计算机辅助设计) 一般化 灵敏度(控制系统) 鉴别器 图像融合 计算机视觉 数学 探测器 工程类 数学分析 电信 电子工程 几何学
作者
Weiying Xie,Yuhang Cui,Yunsong Li,Jie Lei,Qian Du,Jiaojiao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (1): 463-477 被引量:52
标识
DOI:10.1109/tgrs.2020.2994238
摘要

Hyperspectral (HS) pansharpening, as a special case of the superresolution (SR) problem, is to obtain a high-resolution (HR) image from the fusion of an HR panchromatic (PAN) image and a low-resolution (LR) HS image. Though HS pansharpening based on deep learning has gained rapid development in recent years, it is still a challenging task because of the following requirements: 1) a unique model with the goal of fusing two images with different dimensions should enhance spatial resolution while preserving spectral information; 2) all the parameters should be adaptively trained without manual adjustment; and 3) a model with good generalization should overcome the sensitivity to different sensor data in reasonable computational complexity. To meet such requirements, we propose a unique HS pansharpening framework based on a 3-D generative adversarial network (HPGAN) in this article. The HPGAN induces the 3-D spectral-spatial generator network to reconstruct the HR HS image from the newly constructed 3-D PAN cube and the LR HS image. It searches for an optimal HR HS image by successive adversarial learning to fool the introduced PAN discriminator network. The loss function is specifically designed to comprehensively consider global constraint, spectral constraint, and spatial constraint. Besides, the proposed 3-D training in the high-frequency domain reduces the sensitivity to different sensor data and extends the generalization of HPGAN. Experimental results on data sets captured by different sensors illustrate that the proposed method can successfully enhance spatial resolution and preserve spectral information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芦同学完成签到,获得积分10
1秒前
1秒前
1秒前
想睡觉的小笼包完成签到 ,获得积分10
2秒前
2秒前
2秒前
海洋完成签到,获得积分20
3秒前
3秒前
fortune完成签到,获得积分10
3秒前
Yuksn完成签到,获得积分10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
带头大哥应助Evan Wang采纳,获得200
5秒前
胡晓晓完成签到,获得积分10
5秒前
刘洋完成签到,获得积分10
6秒前
科研小白发布了新的文献求助10
6秒前
lvbh发布了新的文献求助30
6秒前
7秒前
ZX0501完成签到,获得积分10
7秒前
8秒前
himes发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
笑笑发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
9秒前
10秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230105
求助须知:如何正确求助?哪些是违规求助? 2877684
关于积分的说明 8201251
捐赠科研通 2545020
什么是DOI,文献DOI怎么找? 1374825
科研通“疑难数据库(出版商)”最低求助积分说明 647109
邀请新用户注册赠送积分活动 621973