Tensor clustering with planted structures: Statistical optimality and computational limits

聚类分析 数学 计算复杂性理论 张量(固有定义) 时间复杂性 多项式的 秩(图论) 集团 算法 组合数学 理论计算机科学 计算机科学 统计 几何学 数学分析
作者
Yuetian Luo,Anru Zhang
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:50 (1) 被引量:18
标识
DOI:10.1214/21-aos2123
摘要

This paper studies the statistical and computational limits of high-order clustering with planted structures. We focus on two clustering models, constant high-order clustering (CHC) and rank-one higher-order clustering (ROHC), and study the methods and theory for testing whether a cluster exists (detection) and identifying the support of cluster (recovery). Specifically, we identify the sharp boundaries of signal-to-noise ratio for which CHC and ROHC detection/recovery are statistically possible. We also develop the tight computational thresholds: when the signal-to-noise ratio is below these thresholds, we prove that polynomial-time algorithms cannot solve these problems under the computational hardness conjectures of hypergraphic planted clique (HPC) detection and hypergraphic planted dense subgraph (HPDS) recovery. We also propose polynomial-time tensor algorithms that achieve reliable detection and recovery when the signal-to-noise ratio is above these thresholds. Both sparsity and tensor structures yield the computational barriers in high-order tensor clustering. The interplay between them results in significant differences between high-order tensor clustering and matrix clustering in literature in aspects of statistical and computational phase transition diagrams, algorithmic approaches, hardness conjecture, and proof techniques. To our best knowledge, we are the first to give a thorough characterization of the statistical and computational trade-off for such a double computational-barrier problem. Finally, we provide evidence for the computational hardness conjectures of HPC detection (via low-degree polynomial and Metropolis methods) and HPDS recovery (via low-degree polynomial method).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利利应助宇宙超人007008采纳,获得10
1秒前
1秒前
华仔应助叮咚jingle采纳,获得10
1秒前
紧张的铃铛完成签到,获得积分10
2秒前
清晨发布了新的文献求助10
2秒前
3秒前
LiLi完成签到,获得积分10
3秒前
3秒前
刘二狗发布了新的文献求助10
4秒前
4秒前
4秒前
王羊补牢完成签到 ,获得积分10
5秒前
搞怪的人龙完成签到,获得积分10
6秒前
6秒前
7秒前
可能可能最可能不像不像不太像完成签到,获得积分10
7秒前
暴躁的鸿发布了新的文献求助10
8秒前
唐唐发布了新的文献求助10
9秒前
Culto完成签到,获得积分20
9秒前
JamesPei应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
ceeray23应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
刘二狗完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
Cc完成签到,获得积分10
12秒前
中中中发布了新的文献求助10
12秒前
小张只爱姜云升完成签到,获得积分20
13秒前
yu发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993