Tensor clustering with planted structures: Statistical optimality and computational limits

聚类分析 数学 计算复杂性理论 张量(固有定义) 时间复杂性 多项式的 秩(图论) 集团 算法 组合数学 理论计算机科学 计算机科学 统计 几何学 数学分析
作者
Yuetian Luo,Anru Zhang
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:50 (1) 被引量:18
标识
DOI:10.1214/21-aos2123
摘要

This paper studies the statistical and computational limits of high-order clustering with planted structures. We focus on two clustering models, constant high-order clustering (CHC) and rank-one higher-order clustering (ROHC), and study the methods and theory for testing whether a cluster exists (detection) and identifying the support of cluster (recovery). Specifically, we identify the sharp boundaries of signal-to-noise ratio for which CHC and ROHC detection/recovery are statistically possible. We also develop the tight computational thresholds: when the signal-to-noise ratio is below these thresholds, we prove that polynomial-time algorithms cannot solve these problems under the computational hardness conjectures of hypergraphic planted clique (HPC) detection and hypergraphic planted dense subgraph (HPDS) recovery. We also propose polynomial-time tensor algorithms that achieve reliable detection and recovery when the signal-to-noise ratio is above these thresholds. Both sparsity and tensor structures yield the computational barriers in high-order tensor clustering. The interplay between them results in significant differences between high-order tensor clustering and matrix clustering in literature in aspects of statistical and computational phase transition diagrams, algorithmic approaches, hardness conjecture, and proof techniques. To our best knowledge, we are the first to give a thorough characterization of the statistical and computational trade-off for such a double computational-barrier problem. Finally, we provide evidence for the computational hardness conjectures of HPC detection (via low-degree polynomial and Metropolis methods) and HPDS recovery (via low-degree polynomial method).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助10
3秒前
4秒前
2568269431完成签到 ,获得积分10
4秒前
5秒前
5秒前
灵巧剑心发布了新的文献求助10
6秒前
踏实的熠彤完成签到,获得积分10
6秒前
sun完成签到,获得积分10
6秒前
7秒前
xiajiahao发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
车梓银完成签到 ,获得积分10
10秒前
科研通AI6应助Alanni采纳,获得10
10秒前
无限绮南发布了新的文献求助10
12秒前
12秒前
12秒前
JamesPei应助灵巧剑心采纳,获得10
13秒前
17秒前
18秒前
18秒前
Tree_QD完成签到 ,获得积分10
20秒前
标致的无极完成签到,获得积分20
20秒前
ajjdnd发布了新的文献求助10
22秒前
李洁发布了新的文献求助30
22秒前
干净寻冬应助科研通管家采纳,获得10
23秒前
ATIHSA88应助科研通管家采纳,获得10
23秒前
坦率灵槐应助科研通管家采纳,获得10
23秒前
AneyWinter66应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
24秒前
ATIHSA88应助科研通管家采纳,获得10
24秒前
24秒前
AneyWinter66应助科研通管家采纳,获得10
24秒前
xu应助科研通管家采纳,获得50
24秒前
坦率灵槐应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995