过电位
密度泛函理论
离解(化学)
催化作用
碱性水电解
材料科学
金属
氢
纳米线
碱土金属
化学物理
化学
电解
化学工程
无机化学
纳米技术
物理化学
计算化学
电化学
电极
冶金
电解质
生物化学
有机化学
工程类
作者
Ashwani Kumar,Viet Q. Bui,Jinsun Lee,Amol R. Jadhav,Yosep Hwang,Min Gyu Kim,Yoshiyuki Kawazoe,Hyoyoung Lee
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-01-04
卷期号:6 (2): 354-363
被引量:188
标识
DOI:10.1021/acsenergylett.0c02498
摘要
Exploring earth-abundant electrocatalysts with Pt-like performance toward alkaline hydrogen evolution reaction (HER) is extremely desirable for the hydrogen economy but remains challenging. Herein, density functional theory (DFT) predictions reveal that the electronic structure and localized charge density at the heterointerface of NiP2–FeP2 can be significantly modulated upon coupling with metallic Cu, resulting in optimized proton adsorption energy and reduced barrier for water dissociation, synergistically boosting alkaline HER. Motivated by theoretical predictions, we developed a facile strategy to fabricate interface-rich NiP2–FeP2 coupled with Cu nanowires (CuNW) grown on Cu foam (NiP2–FeP2/CuNW/Cuf). Benefiting from the superior intrinsic activity, conductivity, and copious active sites, the obtained catalyst exhibited exceptional alkaline HER activity requiring a low overpotential of 23.6 mV at −10 mA/cm2, surpassing the state-of-the-art Pt. Additionally, a full electrolyzer required a cell voltage of 1.42/1.4 V at 10 mA/cm2 in alkaline water/seawater with promising stability. This work highlights a design principle for advanced HER catalysts and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI