Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

队列 急性冠脉综合征 接收机工作特性 医学 曲线下面积 队列研究 前瞻性队列研究 计算机科学 内科学 机器学习 心肌梗塞
作者
Fabrizio D’Ascenzo,Ovidio De Filippo,Guglielmo Gallone,Gianluca Mittone,Marco A. Deriu,Mario Iannaccone,Albert Ariza‐Solé,Christoph Liebetrau,Sergio Manzano‐Fernández,Giorgio Quadri,Tim Kinnaird,Gianluca Campo,José P.S. Henriques,James M. Hughes,Alberto Domínguez‐Rodríguez,Marco Aldinucci,Umberto Morbiducci,Giuseppe Patti,Sergio Raposeiras‐Roubín,Emad Abu‐Assi
出处
期刊:The Lancet [Elsevier BV]
卷期号:397 (10270): 199-207 被引量:246
标识
DOI:10.1016/s0140-6736(20)32519-8
摘要

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Funding None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助从容芸采纳,获得10
1秒前
1秒前
万能图书馆应助无明采纳,获得10
1秒前
果小美G发布了新的文献求助10
2秒前
LeafLight完成签到,获得积分20
3秒前
科研通AI5应助qazzzyy采纳,获得30
3秒前
哇哈哈完成签到,获得积分10
4秒前
YY88687321发布了新的文献求助10
4秒前
爆米花应助sunrase采纳,获得10
4秒前
4秒前
zz发布了新的文献求助10
4秒前
Xenogenesis完成签到,获得积分10
5秒前
可爱的函函应助简单冰菱采纳,获得10
5秒前
6秒前
顺心从安发布了新的文献求助10
6秒前
苹果芝完成签到,获得积分10
6秒前
搜集达人应助昏睡的立果采纳,获得30
7秒前
7秒前
don完成签到 ,获得积分10
7秒前
8秒前
8秒前
这瓜不卖发布了新的文献求助10
9秒前
szc-2000发布了新的文献求助10
9秒前
9秒前
9秒前
Hello应助morry5007采纳,获得10
10秒前
桐桐应助YY88687321采纳,获得10
10秒前
XJX完成签到,获得积分10
10秒前
10秒前
ding应助麦客采纳,获得10
10秒前
10秒前
六月歌者发布了新的文献求助10
11秒前
fanfan发布了新的文献求助10
11秒前
11秒前
刘忙完成签到,获得积分10
11秒前
鸡腿战神完成签到,获得积分10
12秒前
科研通AI2S应助伈X采纳,获得10
13秒前
自然的小熊猫完成签到 ,获得积分10
13秒前
Feng5945完成签到 ,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768954
求助须知:如何正确求助?哪些是违规求助? 3313999
关于积分的说明 10169957
捐赠科研通 3028917
什么是DOI,文献DOI怎么找? 1662170
邀请新用户注册赠送积分活动 794707
科研通“疑难数据库(出版商)”最低求助积分说明 756358