已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

队列 急性冠脉综合征 接收机工作特性 医学 曲线下面积 队列研究 前瞻性队列研究 计算机科学 内科学 机器学习 心肌梗塞
作者
Fabrizio D’Ascenzo,Ovidio De Filippo,Guglielmo Gallone,Gianluca Mittone,Marco A. Deriu,Mario Iannaccone,Albert Ariza‐Solé,Christoph Liebetrau,Sergio Manzano‐Fernández,Giorgio Quadri,Tim Kinnaird,Gianluca Campo,José P.S. Henriques,James M. Hughes,Alberto Domínguez‐Rodríguez,Marco Aldinucci,Umberto Morbiducci,Giuseppe Patti,Sergio Raposeiras‐Roubín,Emad Abu‐Assi
出处
期刊:The Lancet [Elsevier BV]
卷期号:397 (10270): 199-207 被引量:309
标识
DOI:10.1016/s0140-6736(20)32519-8
摘要

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Funding None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
米酒汤圆发布了新的文献求助30
1秒前
深情幻巧完成签到,获得积分10
1秒前
光亮秋白完成签到,获得积分10
2秒前
星空棒棒糖完成签到 ,获得积分10
4秒前
ding应助SONGREN采纳,获得10
5秒前
5秒前
漂亮香芦发布了新的文献求助10
5秒前
chris发布了新的文献求助20
7秒前
7秒前
luoshi94完成签到,获得积分10
7秒前
10秒前
11秒前
ZZQ发布了新的文献求助10
12秒前
妤懿完成签到 ,获得积分10
13秒前
刘书洋发布了新的文献求助10
14秒前
FashionBoy应助开心丸子采纳,获得10
15秒前
壮观复天完成签到 ,获得积分10
16秒前
18秒前
18秒前
123456发布了新的文献求助10
18秒前
企鹅爱煲汤完成签到,获得积分10
19秒前
kai发布了新的文献求助10
21秒前
ZZQ完成签到,获得积分10
23秒前
asd发布了新的文献求助10
23秒前
23秒前
25秒前
27秒前
小蘑菇应助Epiphany_wts采纳,获得10
27秒前
米酒汤圆发布了新的文献求助30
28秒前
violet完成签到 ,获得积分10
31秒前
若水完成签到 ,获得积分10
32秒前
32秒前
Yau完成签到,获得积分10
33秒前
kai完成签到,获得积分10
35秒前
wackykao完成签到 ,获得积分10
35秒前
36秒前
JamesPei应助Epiphany_wts采纳,获得10
38秒前
于可欣发布了新的文献求助10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339