已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

队列 急性冠脉综合征 接收机工作特性 医学 曲线下面积 队列研究 前瞻性队列研究 计算机科学 内科学 机器学习 心肌梗塞
作者
Fabrizio D’Ascenzo,Ovidio De Filippo,Guglielmo Gallone,Gianluca Mittone,Marco A. Deriu,Mario Iannaccone,Albert Arizá-Solé,Christoph Liebetrau,Sergio Manzano‐Fernández,Giorgio Quadri,Tim Kinnaird,Gianluca Campo,José P.S. Henriques,James M. Hughes,Alberto Domínguez‐Rodríguez,Marco Aldinucci,Umberto Morbiducci,Giuseppe Patti,Sergio Raposeiras‐Roubín,Emad Abu‐Assi,Gaetano Maria De Ferrari,Francesco Piroli,Andrea Saglietto,Federico Conrotto,Pierluigi Omedè,Antonio Montefusco,Mauro Pennone,Francesco Bruno,Pier Paolo Bocchino,Giacomo Boccuzzi,Enrico Cerrato,Ferdinando Varbella,Michela Sperti,Stephen B. Wilton,Lazar Velicki,Ioanna Xanthopoulou,Ángel Cequier,Andrés Íñiguez,Isabel Muñoz Pousa,María Cespón Fernández,Berenice Caneiro Queija,Rafael Cobas Paz,Ángel López‐Cuenca,Alberto Garay,Pedro Flores Blanco,Andrea Rognoni,Giuseppe Biondi‐Zoccai,Simone Biscaglia,Iván J. Núñez‐Gil,Toshiharu Fujii,Alessandro Durante,Xiantao Song,Tetsuma Kawaji,Dimitrios Alexopoulos,Zenon Huczek,José Ramón González‐Juanatey,Shaoping Nie,Masa–aki Kawashiri,Iacopo Colonnelli,Barbara Cantalupo,Roberto Esposito,Sergio Leonardi,Walter Grosso Marra,Alaide Chieffo,Umberto Michelucci,Dario Piga,Marta Malavolta,Sebastiano Gili,Marco Mennuni,Claudio Montalto,Luigi Oltrona Visconti,Yasir Arfat
出处
期刊:The Lancet [Elsevier]
卷期号:397 (10270): 199-207 被引量:222
标识
DOI:10.1016/s0140-6736(20)32519-8
摘要

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Funding None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的猎豹完成签到,获得积分10
1秒前
2秒前
没有名称发布了新的文献求助10
3秒前
情怀应助六号线采纳,获得10
4秒前
6秒前
6秒前
别找了睡觉吧完成签到 ,获得积分10
8秒前
笨笨灵雁完成签到,获得积分20
10秒前
称心曼安完成签到 ,获得积分10
11秒前
11秒前
严怜梦完成签到 ,获得积分0
12秒前
脑洞疼应助花痴的早晨采纳,获得10
13秒前
周周发布了新的文献求助10
17秒前
啦啦啦完成签到,获得积分10
19秒前
joker完成签到 ,获得积分10
19秒前
可可是欧皇完成签到,获得积分10
20秒前
小马甲应助童不二采纳,获得10
22秒前
qcy72完成签到,获得积分10
22秒前
丘比特应助现代期待采纳,获得10
27秒前
29秒前
29秒前
BA1完成签到,获得积分10
29秒前
33秒前
3237924531发布了新的文献求助10
36秒前
笨笨灵雁发布了新的文献求助10
36秒前
CodeCraft应助童不二采纳,获得10
37秒前
优雅映冬完成签到,获得积分10
38秒前
38秒前
酷波er应助飞快的寻云采纳,获得10
40秒前
Liao完成签到 ,获得积分10
41秒前
跳跃雨文发布了新的文献求助20
41秒前
情怀应助优雅映冬采纳,获得10
42秒前
3237924531完成签到,获得积分10
45秒前
46秒前
王晓宇完成签到,获得积分10
50秒前
虚幻明杰发布了新的文献求助10
50秒前
54秒前
bkagyin应助科研通管家采纳,获得10
55秒前
脑洞疼应助科研通管家采纳,获得30
55秒前
小马甲应助科研通管家采纳,获得10
55秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219617
求助须知:如何正确求助?哪些是违规求助? 2868402
关于积分的说明 8160892
捐赠科研通 2535463
什么是DOI,文献DOI怎么找? 1367918
科研通“疑难数据库(出版商)”最低求助积分说明 645118
邀请新用户注册赠送积分活动 618457