Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

队列 急性冠脉综合征 接收机工作特性 医学 曲线下面积 队列研究 前瞻性队列研究 计算机科学 内科学 机器学习 心肌梗塞
作者
Fabrizio D’Ascenzo,Ovidio De Filippo,Guglielmo Gallone,Gianluca Mittone,Marco A. Deriu,Mario Iannaccone,Albert Ariza‐Solé,Christoph Liebetrau,Sergio Manzano‐Fernández,Giorgio Quadri,Tim Kinnaird,Gianluca Campo,José P.S. Henriques,James M. Hughes,Alberto Domínguez‐Rodríguez,Marco Aldinucci,Umberto Morbiducci,Giuseppe Patti,Sergio Raposeiras‐Roubín,Emad Abu‐Assi
出处
期刊:The Lancet [Elsevier BV]
卷期号:397 (10270): 199-207 被引量:252
标识
DOI:10.1016/s0140-6736(20)32519-8
摘要

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Funding None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分20
1秒前
怕黑的凌柏完成签到,获得积分10
6秒前
JamesPei应助lv采纳,获得10
7秒前
1111发布了新的文献求助10
8秒前
orixero应助路宝采纳,获得10
8秒前
10秒前
椰青冰萃发布了新的文献求助10
12秒前
科研小李发布了新的文献求助10
13秒前
徐长卿完成签到 ,获得积分10
14秒前
16秒前
18秒前
20秒前
Coconut发布了新的文献求助20
21秒前
22秒前
23秒前
23秒前
天天快乐应助科研小李采纳,获得10
24秒前
FashionBoy应助科研小李采纳,获得10
24秒前
Hello应助科研小李采纳,获得10
24秒前
NexusExplorer应助科研小李采纳,获得10
24秒前
搜集达人应助科研小李采纳,获得10
24秒前
Ava应助科研小李采纳,获得10
24秒前
24秒前
赘婿应助科研小李采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
lv发布了新的文献求助10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
26秒前
韩凡发布了新的文献求助10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得30
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579