亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

队列 急性冠脉综合征 接收机工作特性 医学 曲线下面积 队列研究 前瞻性队列研究 计算机科学 内科学 机器学习 心肌梗塞
作者
Fabrizio D’Ascenzo,Ovidio De Filippo,Guglielmo Gallone,Gianluca Mittone,Marco A. Deriu,Mario Iannaccone,Albert Ariza‐Solé,Christoph Liebetrau,Sergio Manzano‐Fernández,Giorgio Quadri,Tim Kinnaird,Gianluca Campo,José P.S. Henriques,James M. Hughes,Alberto Domínguez‐Rodríguez,Marco Aldinucci,Umberto Morbiducci,Giuseppe Patti,Sergio Raposeiras‐Roubín,Emad Abu‐Assi
出处
期刊:The Lancet [Elsevier]
卷期号:397 (10270): 199-207 被引量:309
标识
DOI:10.1016/s0140-6736(20)32519-8
摘要

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Funding None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwenjing完成签到,获得积分20
3秒前
5秒前
8秒前
lwenjing发布了新的文献求助10
9秒前
Annie完成签到 ,获得积分10
12秒前
南草北树发布了新的文献求助10
14秒前
Ava应助科研通管家采纳,获得10
17秒前
HaCat应助科研通管家采纳,获得10
17秒前
搜集达人应助可爱丹彤采纳,获得10
20秒前
24秒前
万能图书馆应助可爱丹彤采纳,获得10
37秒前
柚又完成签到 ,获得积分10
54秒前
韩雨桐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Gabriel发布了新的文献求助10
1分钟前
852应助可爱丹彤采纳,获得10
1分钟前
1分钟前
1分钟前
深情安青应助可爱丹彤采纳,获得10
1分钟前
1分钟前
领导范儿应助Gabriel采纳,获得10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
华仔应助可爱丹彤采纳,获得10
1分钟前
沐沐完成签到,获得积分20
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Tales完成签到 ,获得积分10
2分钟前
沉静的碧琴完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
QQ发布了新的文献求助10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
w123发布了新的文献求助10
2分钟前
天选小牛马完成签到 ,获得积分10
3分钟前
w123完成签到,获得积分10
3分钟前
zwb完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639