Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

队列 急性冠脉综合征 接收机工作特性 医学 曲线下面积 队列研究 前瞻性队列研究 计算机科学 内科学 机器学习 心肌梗塞
作者
Fabrizio D’Ascenzo,Ovidio De Filippo,Guglielmo Gallone,Gianluca Mittone,Marco A. Deriu,Mario Iannaccone,Albert Ariza‐Solé,Christoph Liebetrau,Sergio Manzano‐Fernández,Giorgio Quadri,Tim Kinnaird,Gianluca Campo,José P.S. Henriques,James M. Hughes,Alberto Domínguez‐Rodríguez,Marco Aldinucci,Umberto Morbiducci,Giuseppe Patti,Sergio Raposeiras‐Roubín,Emad Abu‐Assi
出处
期刊:The Lancet [Elsevier BV]
卷期号:397 (10270): 199-207 被引量:309
标识
DOI:10.1016/s0140-6736(20)32519-8
摘要

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Funding None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqqqqy应助elisa828采纳,获得10
1秒前
WZQ关闭了WZQ文献求助
1秒前
Yinoe发布了新的文献求助10
1秒前
1秒前
已有琦琦勿扰完成签到 ,获得积分10
2秒前
脑洞疼应助林牧采纳,获得10
2秒前
英俊的铭应助怪怪采纳,获得10
2秒前
云雀完成签到,获得积分10
3秒前
春意盎然发布了新的文献求助10
3秒前
5秒前
7秒前
7秒前
科研通AI6应助坚定珍采纳,获得10
7秒前
lxg发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
10秒前
大大怪发布了新的文献求助10
11秒前
11秒前
smg1307完成签到 ,获得积分10
11秒前
alvin完成签到 ,获得积分10
12秒前
纸鸢发布了新的文献求助10
12秒前
12秒前
深情听露发布了新的文献求助20
13秒前
Kyrie发布了新的文献求助10
13秒前
达雨发布了新的文献求助10
14秒前
WZQ驳回了爆米花应助
15秒前
852应助俞俊敏采纳,获得10
16秒前
科研通AI6应助七七采纳,获得10
17秒前
Mare发布了新的文献求助10
18秒前
18秒前
SciGPT应助impgod采纳,获得10
19秒前
20秒前
20秒前
在水一方应助怡然的飞槐采纳,获得10
21秒前
21秒前
22秒前
Hollow发布了新的文献求助10
22秒前
YWKgg发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158967
求助须知:如何正确求助?哪些是违规求助? 4353615
关于积分的说明 13555988
捐赠科研通 4197142
什么是DOI,文献DOI怎么找? 2301953
邀请新用户注册赠送积分活动 1301933
关于科研通互助平台的介绍 1247023