已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

队列 急性冠脉综合征 接收机工作特性 医学 曲线下面积 队列研究 前瞻性队列研究 计算机科学 内科学 机器学习 心肌梗塞
作者
Fabrizio D’Ascenzo,Ovidio De Filippo,Guglielmo Gallone,Gianluca Mittone,Marco A. Deriu,Mario Iannaccone,Albert Ariza‐Solé,Christoph Liebetrau,Sergio Manzano‐Fernández,Giorgio Quadri,Tim Kinnaird,Gianluca Campo,José P.S. Henriques,James M. Hughes,Alberto Domínguez‐Rodríguez,Marco Aldinucci,Umberto Morbiducci,Giuseppe Patti,Sergio Raposeiras‐Roubín,Emad Abu‐Assi
出处
期刊:The Lancet [Elsevier]
卷期号:397 (10270): 199-207 被引量:309
标识
DOI:10.1016/s0140-6736(20)32519-8
摘要

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Funding None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Omni完成签到,获得积分10
刚刚
子陇完成签到,获得积分10
1秒前
2秒前
LTJ完成签到,获得积分10
2秒前
又声完成签到,获得积分10
5秒前
5秒前
Yxxx完成签到 ,获得积分10
6秒前
酷波er应助秀儿采纳,获得10
7秒前
故意不上钩的鱼应助Omni采纳,获得10
7秒前
9秒前
隐形曼青应助魔幻的外套采纳,获得10
11秒前
充电宝应助yyyyyzy采纳,获得10
13秒前
弈天完成签到 ,获得积分10
13秒前
芝士奶盖有点咸完成签到 ,获得积分10
14秒前
成就书雪完成签到,获得积分10
15秒前
你好完成签到 ,获得积分0
16秒前
spring完成签到,获得积分10
19秒前
19秒前
sweet完成签到 ,获得积分10
19秒前
19秒前
小呆完成签到 ,获得积分10
20秒前
21秒前
23秒前
秀儿发布了新的文献求助10
23秒前
23秒前
羁鸟完成签到,获得积分10
25秒前
尚秋月完成签到,获得积分10
29秒前
29秒前
傲娇的棉花糖完成签到 ,获得积分10
30秒前
31秒前
科目三应助无风采纳,获得10
32秒前
坦率的语芙完成签到,获得积分10
34秒前
英俊的铭应助Metrol_Wang采纳,获得10
37秒前
Akim应助羁鸟采纳,获得10
39秒前
ycwang完成签到,获得积分10
40秒前
冷酷哈密瓜完成签到,获得积分10
43秒前
啧啧发布了新的文献求助100
44秒前
垣味栗子酱完成签到,获得积分10
45秒前
爱听歌长颈鹿完成签到,获得积分10
46秒前
山猪吃细糠完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290873
求助须知:如何正确求助?哪些是违规求助? 4442088
关于积分的说明 13829259
捐赠科研通 4324915
什么是DOI,文献DOI怎么找? 2373887
邀请新用户注册赠送积分活动 1369281
关于科研通互助平台的介绍 1333356