Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism

计算机科学 人工智能 模态(人机交互) 特征提取 深度学习 特征(语言学) 肺癌 模式识别(心理学) 可视化 计算机辅助诊断 机器学习 医学 病理 语言学 哲学
作者
Ruoxi Qin,Zhenzhen Wang,Lingyun Jiang,Kai Qiao,Jinjin Hai,Jian Chen,Jibin Xu,Dapeng Shi,Bin Yan
出处
期刊:Complexity [Hindawi Limited]
卷期号:2020: 1-12 被引量:34
标识
DOI:10.1155/2020/6153657
摘要

Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid screening of potential patients with lung cancer. Deep learning methods have already been applied for the automatic diagnosis of lung cancer in the past. Due to restrictions caused by single modality images of dataset as well as the lack of approaches that allow for a reliable extraction of fine-grained features from different imaging modalities, research regarding the automated diagnosis of lung cancer based on noninvasive clinical images requires further study. In this paper, we present a deep learning architecture that combines the fine-grained feature from PET and CT images that allow for the noninvasive diagnosis of lung cancer. The multidimensional (regarding the channel as well as spatial dimensions) attention mechanism is used to effectively reduce feature noise when extracting fine-grained features from each imaging modality. We conduct a comparative analysis of the two aspects of feature fusion and attention mechanism through quantitative evaluation metrics and the visualization of deep learning process. In our experiments, we obtained an area under the ROC curve of 0.92 (balanced accuracy = 0.72) and a more focused network attention which shows the effective extraction of the fine-grained feature from each imaging modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Zzzyh发布了新的文献求助20
3秒前
3秒前
希望天下0贩的0应助cy采纳,获得10
4秒前
7秒前
9秒前
9秒前
加菲丰丰应助笑嘻嘻采纳,获得20
9秒前
liuhe发布了新的文献求助20
9秒前
yyy完成签到,获得积分20
10秒前
高高高发布了新的文献求助20
10秒前
11秒前
李爱国应助整齐的书白采纳,获得10
11秒前
刻苦的元菱完成签到,获得积分10
11秒前
12秒前
Lucas应助猴哥采纳,获得10
13秒前
钟志成发布了新的文献求助10
14秒前
14秒前
精明晓刚发布了新的文献求助10
14秒前
NN123发布了新的文献求助10
16秒前
17秒前
精明晓刚完成签到,获得积分10
18秒前
ash发布了新的文献求助10
20秒前
bkagyin应助从容半仙采纳,获得10
21秒前
HughWang完成签到,获得积分10
24秒前
整齐的书白完成签到,获得积分10
26秒前
天天快乐应助科研通管家采纳,获得10
26秒前
打打应助科研通管家采纳,获得10
26秒前
tianzml0应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
星辰大海应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
大个应助科研通管家采纳,获得10
27秒前
麻辣香锅应助科研通管家采纳,获得10
27秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164351
求助须知:如何正确求助?哪些是违规求助? 2815193
关于积分的说明 7908079
捐赠科研通 2474802
什么是DOI,文献DOI怎么找? 1317676
科研通“疑难数据库(出版商)”最低求助积分说明 631925
版权声明 602234