欧米茄
独特性
兰姆达
组合数学
有界函数
物理
多重性(数学)
领域(数学分析)
数学
数学物理
数学分析
量子力学
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2020-01-01
卷期号:25 (7): 2555-2582
被引量:1
标识
DOI:10.3934/dcdsb.2020022
摘要
In this paper, we investigate a class of nonlocal dispersal logistic equations with nonlocal terms \begin{document}$\left\{ {\begin{array}{*{20}{l}}{{u_t} = Du + {u^q}\left( {\lambda + a(x)\int_\Omega b (x){u^p}} \right),}&{{\rm{\quad\quad in\quad\quad}}\Omega \times (0, + \infty ),}\\{u(x,0) = {u_0}(x) \ge 0}&{{\rm{\quad\quad\quad\quad\quad\quad\quad in\quad\quad}}\Omega ,}\\{u = 0,}&{{\rm{ on\quad\quad}}{{\mathbb{R}}^N}\backslash \Omega \times (0, + \infty ),}\end{array}} \right.$\end{document}where $ \Omega\subset \mathbb{R}^N(N\geq1) $ is a bounded domain, $ \lambda\in \mathbb{R} $, $ 0<q\leq1 $, $ p>0 $, $ a,b\in C(\overline{\Omega}) $, $ b\geq0 $, $ b\neq0 $ and $ a $ verifies either $ a>0 $ or $ a<0 $. $ Du = \int_\Omega J(x-y)u(y,t){\rm{d}}y-u(x,t) $ represents the nonlocal dispersal operators, which is continuous and nonpositive. Under some suitable assumptions we establish the existence, uniqueness or multiplicity and stability of positive stationary solution with nonlocal reaction term by using sub-supersolution methods, Lerray-Schauder degree theory and Lyapunov-Schmidt reduction and so on.
科研通智能强力驱动
Strongly Powered by AbleSci AI