电池(电)
计算机科学
理论(学习稳定性)
高保真
荷电状态
控制理论(社会学)
锂(药物)
估计
方案(数学)
国家(计算机科学)
电压
算法
工程类
功率(物理)
电气工程
数学
人工智能
物理
控制(管理)
量子力学
机器学习
医学
数学分析
系统工程
内分泌学
作者
Scott Moura,Federico Bribiesca Argomedo,Reinhardt Klein,Anahita Mirtabatabaei,Miroslav Krstić
标识
DOI:10.1109/tcst.2016.2571663
摘要
This paper studies a state estimation scheme for a reduced electrochemical battery model, using voltage and current measurements. Real-time electrochemical state information enables high-fidelity monitoring and high-performance operation in advanced battery management systems, for applications such as consumer electronics, electrified vehicles, and grid energy storage. This paper derives a single particle model (SPM) with electrolyte that achieves higher predictive accuracy than the SPM. Next, we propose an estimation scheme and prove estimation error system stability, assuming that the total amount of lithium in the cell is known. The state estimation scheme exploits the dynamical properties, such as marginal stability, local invertibility, and conservation of lithium. Simulations demonstrate the algorithm's performance and limitations.
科研通智能强力驱动
Strongly Powered by AbleSci AI