Standard machine learning algorithms applied to UPLC-TOF/MS metabolic fingerprinting for the discovery of wound biomarkers in Arabidopsis thaliana

人工智能 计算机科学 机器学习 特征选择 过度拟合 代谢组学 朴素贝叶斯分类器 背景(考古学) 可解释性 支持向量机 生物标志物发现 决策树 模式识别(心理学) 人工神经网络 生物信息学 蛋白质组学 生物 化学 古生物学 基因 生物化学
作者
Julien Boccard,Alexandros Kalousis,Mélanie Hilario,Pierre Lantéri,Mohamed Hanafi,Gérard Mazerolles,Jean‐Luc Wolfender,Pierre‐Alain Carrupt,Serge Rudaz
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:104 (1): 20-27 被引量:25
标识
DOI:10.1016/j.chemolab.2010.03.003
摘要

Metabolomics experiments involve the simultaneous detection of a high number of metabolites leading to large multivariate datasets and computer-based applications are required to extract relevant biological information. A high-throughput metabolic fingerprinting approach based on ultra performance liquid chromatography (UPLC) and high resolution time-of-flight (TOF) mass spectrometry (MS) was developed for the detection of wound biomarkers in the model plant Arabidopsis thaliana. High-dimensional data were generated and analysed with chemometric methods. Besides, machine learning classification algorithms constitute promising tools to decipher complex metabolic phenotypes but their application remains however scarcely reported in that research field. The present work proposes a comparative evaluation of a set of diverse machine learning schemes in the context of metabolomic data with respect to their ability to provide a deeper insight into the metabolite network involved in the wound response. Standalone classifiers, i.e. J48 (decision tree), kNN (instance-based learner), SMO (support vector machine), multilayer perceptron and RBF network (neural networks) and Naive Bayes (probabilistic method), or combinations of classification and feature selection algorithms, such as Information Gain, RELIEF-F, Correlation Feature-based Selection and SVM-based methods, are concurrently assessed and cross-validation resampling procedures are used to avoid overfitting. This study demonstrates that machine learning methods represent valuable tools for the analysis of UPLC-TOF/MS metabolomic data. In addition, remarkable performance was achieved, while the models' stability showed the robustness and the interpretability potential. The results allowed drawing attention to both temporal and spatial metabolic patterns in the context of stress signalling and highlighting relevant biomarkers not evidenced with standard data treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aktuell发布了新的文献求助20
刚刚
英勇代荷完成签到,获得积分10
1秒前
zheng完成签到 ,获得积分10
4秒前
4秒前
用户5063899完成签到,获得积分10
5秒前
Yuuki完成签到,获得积分10
5秒前
路远完成签到,获得积分20
7秒前
安全123发布了新的文献求助30
8秒前
9秒前
路远发布了新的文献求助10
10秒前
欢呼问旋完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
15秒前
写论文的狗完成签到,获得积分10
15秒前
wushuang完成签到 ,获得积分10
16秒前
小铃铛发布了新的文献求助10
16秒前
无极微光应助阳炎采纳,获得20
16秒前
之之完成签到,获得积分10
16秒前
多看论文多读书关注了科研通微信公众号
17秒前
18秒前
18秒前
19秒前
Kk完成签到,获得积分10
19秒前
落寞傲南完成签到,获得积分10
19秒前
wanci应助曲书文采纳,获得10
20秒前
英俊的尔容完成签到 ,获得积分10
20秒前
高级牛马完成签到 ,获得积分10
21秒前
22秒前
22秒前
FashionBoy应助Viyo采纳,获得10
22秒前
赵晨雪完成签到 ,获得积分10
22秒前
安全123完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
coco完成签到,获得积分10
24秒前
美满的鲂发布了新的文献求助10
25秒前
26秒前
小章呀发布了新的文献求助10
26秒前
Hello应助安全123采纳,获得10
26秒前
CQ发布了新的文献求助10
27秒前
Mado发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789740
求助须知:如何正确求助?哪些是违规求助? 5722835
关于积分的说明 15475357
捐赠科研通 4917509
什么是DOI,文献DOI怎么找? 2647048
邀请新用户注册赠送积分活动 1594699
关于科研通互助平台的介绍 1549180