亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Standard machine learning algorithms applied to UPLC-TOF/MS metabolic fingerprinting for the discovery of wound biomarkers in Arabidopsis thaliana

人工智能 计算机科学 机器学习 特征选择 过度拟合 代谢组学 朴素贝叶斯分类器 背景(考古学) 可解释性 支持向量机 生物标志物发现 决策树 模式识别(心理学) 人工神经网络 生物信息学 蛋白质组学 生物 化学 古生物学 基因 生物化学
作者
Julien Boccard,Alexandros Kalousis,Mélanie Hilario,Pierre Lantéri,Mohamed Hanafi,Gérard Mazerolles,Jean‐Luc Wolfender,Pierre‐Alain Carrupt,Serge Rudaz
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:104 (1): 20-27 被引量:25
标识
DOI:10.1016/j.chemolab.2010.03.003
摘要

Metabolomics experiments involve the simultaneous detection of a high number of metabolites leading to large multivariate datasets and computer-based applications are required to extract relevant biological information. A high-throughput metabolic fingerprinting approach based on ultra performance liquid chromatography (UPLC) and high resolution time-of-flight (TOF) mass spectrometry (MS) was developed for the detection of wound biomarkers in the model plant Arabidopsis thaliana. High-dimensional data were generated and analysed with chemometric methods. Besides, machine learning classification algorithms constitute promising tools to decipher complex metabolic phenotypes but their application remains however scarcely reported in that research field. The present work proposes a comparative evaluation of a set of diverse machine learning schemes in the context of metabolomic data with respect to their ability to provide a deeper insight into the metabolite network involved in the wound response. Standalone classifiers, i.e. J48 (decision tree), kNN (instance-based learner), SMO (support vector machine), multilayer perceptron and RBF network (neural networks) and Naive Bayes (probabilistic method), or combinations of classification and feature selection algorithms, such as Information Gain, RELIEF-F, Correlation Feature-based Selection and SVM-based methods, are concurrently assessed and cross-validation resampling procedures are used to avoid overfitting. This study demonstrates that machine learning methods represent valuable tools for the analysis of UPLC-TOF/MS metabolomic data. In addition, remarkable performance was achieved, while the models' stability showed the robustness and the interpretability potential. The results allowed drawing attention to both temporal and spatial metabolic patterns in the context of stress signalling and highlighting relevant biomarkers not evidenced with standard data treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
bkagyin应助真实的映寒采纳,获得10
34秒前
今后应助谭代涛采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
1分钟前
谭代涛发布了新的文献求助10
1分钟前
swimming完成签到 ,获得积分10
2分钟前
loitinsuen发布了新的文献求助30
2分钟前
2分钟前
3分钟前
发个15分的完成签到 ,获得积分10
3分钟前
Cris完成签到 ,获得积分10
4分钟前
Orange应助默默善愁采纳,获得10
4分钟前
领导范儿应助谭代涛采纳,获得10
4分钟前
Ava应助明芬采纳,获得10
5分钟前
5分钟前
谭代涛发布了新的文献求助10
5分钟前
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
5分钟前
默默善愁发布了新的文献求助10
5分钟前
5分钟前
Orange应助谭代涛采纳,获得10
6分钟前
6分钟前
6分钟前
明芬发布了新的文献求助10
6分钟前
CipherSage应助lwypx采纳,获得10
6分钟前
无限晓蓝完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
谭代涛发布了新的文献求助10
6分钟前
6分钟前
6分钟前
搜集达人应助精明犀牛采纳,获得10
6分钟前
wxy发布了新的文献求助10
6分钟前
lwypx发布了新的文献求助10
7分钟前
wxy完成签到,获得积分10
7分钟前
Akim应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599825
求助须知:如何正确求助?哪些是违规求助? 4685587
关于积分的说明 14838670
捐赠科研通 4671878
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946