Standard machine learning algorithms applied to UPLC-TOF/MS metabolic fingerprinting for the discovery of wound biomarkers in Arabidopsis thaliana

人工智能 计算机科学 机器学习 特征选择 过度拟合 代谢组学 朴素贝叶斯分类器 背景(考古学) 可解释性 支持向量机 生物标志物发现 决策树 模式识别(心理学) 人工神经网络 生物信息学 蛋白质组学 生物 化学 古生物学 基因 生物化学
作者
Julien Boccard,Alexandros Kalousis,Mélanie Hilario,Pierre Lantéri,Mohamed Hanafi,Gérard Mazerolles,Jean‐Luc Wolfender,Pierre‐Alain Carrupt,Serge Rudaz
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:104 (1): 20-27 被引量:25
标识
DOI:10.1016/j.chemolab.2010.03.003
摘要

Metabolomics experiments involve the simultaneous detection of a high number of metabolites leading to large multivariate datasets and computer-based applications are required to extract relevant biological information. A high-throughput metabolic fingerprinting approach based on ultra performance liquid chromatography (UPLC) and high resolution time-of-flight (TOF) mass spectrometry (MS) was developed for the detection of wound biomarkers in the model plant Arabidopsis thaliana. High-dimensional data were generated and analysed with chemometric methods. Besides, machine learning classification algorithms constitute promising tools to decipher complex metabolic phenotypes but their application remains however scarcely reported in that research field. The present work proposes a comparative evaluation of a set of diverse machine learning schemes in the context of metabolomic data with respect to their ability to provide a deeper insight into the metabolite network involved in the wound response. Standalone classifiers, i.e. J48 (decision tree), kNN (instance-based learner), SMO (support vector machine), multilayer perceptron and RBF network (neural networks) and Naive Bayes (probabilistic method), or combinations of classification and feature selection algorithms, such as Information Gain, RELIEF-F, Correlation Feature-based Selection and SVM-based methods, are concurrently assessed and cross-validation resampling procedures are used to avoid overfitting. This study demonstrates that machine learning methods represent valuable tools for the analysis of UPLC-TOF/MS metabolomic data. In addition, remarkable performance was achieved, while the models' stability showed the robustness and the interpretability potential. The results allowed drawing attention to both temporal and spatial metabolic patterns in the context of stress signalling and highlighting relevant biomarkers not evidenced with standard data treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
577完成签到,获得积分20
刚刚
yu_xie发布了新的文献求助10
1秒前
saturning发布了新的文献求助10
1秒前
煊陌完成签到,获得积分10
2秒前
ww关注了科研通微信公众号
2秒前
Ether发布了新的文献求助10
3秒前
3秒前
ding应助windtalker采纳,获得10
4秒前
5秒前
5秒前
173678完成签到,获得积分10
5秒前
5秒前
5秒前
深情安青应助甜甜迎南采纳,获得10
6秒前
6秒前
7秒前
欢呼的铅笔完成签到,获得积分10
7秒前
7秒前
zhichao完成签到 ,获得积分10
7秒前
7秒前
8秒前
9秒前
康康完成签到,获得积分10
9秒前
SciGPT应助Clarence采纳,获得10
9秒前
10秒前
10秒前
fletmer发布了新的文献求助10
11秒前
wanci应助爱科研采纳,获得10
11秒前
陌陌完成签到,获得积分10
12秒前
yu_xie完成签到,获得积分10
12秒前
无可无不可完成签到,获得积分10
12秒前
Colorc发布了新的文献求助10
12秒前
领导范儿应助huiyou2采纳,获得10
12秒前
橙子快跑关注了科研通微信公众号
12秒前
windtalker完成签到,获得积分10
13秒前
fusucheng完成签到,获得积分10
13秒前
lsh完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
zcl应助Shyee采纳,获得100
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989498
求助须知:如何正确求助?哪些是违规求助? 4238780
关于积分的说明 13204012
捐赠科研通 4032918
什么是DOI,文献DOI怎么找? 2206393
邀请新用户注册赠送积分活动 1217687
关于科研通互助平台的介绍 1135821