Standard machine learning algorithms applied to UPLC-TOF/MS metabolic fingerprinting for the discovery of wound biomarkers in Arabidopsis thaliana

人工智能 计算机科学 机器学习 特征选择 过度拟合 代谢组学 朴素贝叶斯分类器 背景(考古学) 可解释性 支持向量机 生物标志物发现 决策树 模式识别(心理学) 人工神经网络 生物信息学 蛋白质组学 生物 化学 基因 生物化学 古生物学
作者
Julien Boccard,Alexandros Kalousis,Mélanie Hilario,Pierre Lantéri,Mohamed Hanafi,Gérard Mazerolles,Jean‐Luc Wolfender,Pierre‐Alain Carrupt,Serge Rudaz
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:104 (1): 20-27 被引量:25
标识
DOI:10.1016/j.chemolab.2010.03.003
摘要

Metabolomics experiments involve the simultaneous detection of a high number of metabolites leading to large multivariate datasets and computer-based applications are required to extract relevant biological information. A high-throughput metabolic fingerprinting approach based on ultra performance liquid chromatography (UPLC) and high resolution time-of-flight (TOF) mass spectrometry (MS) was developed for the detection of wound biomarkers in the model plant Arabidopsis thaliana. High-dimensional data were generated and analysed with chemometric methods. Besides, machine learning classification algorithms constitute promising tools to decipher complex metabolic phenotypes but their application remains however scarcely reported in that research field. The present work proposes a comparative evaluation of a set of diverse machine learning schemes in the context of metabolomic data with respect to their ability to provide a deeper insight into the metabolite network involved in the wound response. Standalone classifiers, i.e. J48 (decision tree), kNN (instance-based learner), SMO (support vector machine), multilayer perceptron and RBF network (neural networks) and Naive Bayes (probabilistic method), or combinations of classification and feature selection algorithms, such as Information Gain, RELIEF-F, Correlation Feature-based Selection and SVM-based methods, are concurrently assessed and cross-validation resampling procedures are used to avoid overfitting. This study demonstrates that machine learning methods represent valuable tools for the analysis of UPLC-TOF/MS metabolomic data. In addition, remarkable performance was achieved, while the models' stability showed the robustness and the interpretability potential. The results allowed drawing attention to both temporal and spatial metabolic patterns in the context of stress signalling and highlighting relevant biomarkers not evidenced with standard data treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威威完成签到,获得积分10
刚刚
zhangyu应助豆豆采纳,获得10
刚刚
cherlie应助jjjjj采纳,获得10
1秒前
2秒前
dz发布了新的文献求助10
2秒前
3秒前
zhx发布了新的文献求助30
3秒前
wyz发布了新的文献求助10
3秒前
annzl发布了新的文献求助10
4秒前
wanci应助纯真冰蝶采纳,获得10
4秒前
桐桐应助zhang采纳,获得10
5秒前
优美电脑发布了新的文献求助80
6秒前
7秒前
在水一方应助青衫采纳,获得10
7秒前
浅蓝默完成签到,获得积分10
7秒前
kk发布了新的文献求助10
8秒前
Felicity完成签到 ,获得积分10
8秒前
9秒前
Culto发布了新的文献求助10
11秒前
xiaowen发布了新的文献求助10
11秒前
wise111发布了新的文献求助10
13秒前
13秒前
恋雅颖月应助bulinggu采纳,获得10
13秒前
Culto完成签到,获得积分10
15秒前
16秒前
奋斗的母鸡完成签到 ,获得积分10
16秒前
小海贼发布了新的文献求助10
16秒前
QianShenYu发布了新的文献求助10
17秒前
yyh发布了新的文献求助30
18秒前
18秒前
华仔应助昵称采纳,获得10
19秒前
FAN完成签到,获得积分10
20秒前
ha发布了新的文献求助10
21秒前
何兴棠完成签到,获得积分10
21秒前
23秒前
FAN发布了新的文献求助10
24秒前
xiaowen完成签到,获得积分10
26秒前
wanci应助llll采纳,获得10
27秒前
27秒前
顾晨关注了科研通微信公众号
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619