Studies of biotechnology applications of Pseudomonas putida KT2440 have been predominantly focused on regulation and expression of the toluene degradation (TOL) pathway. Unfortunately, there is limited information on the role of other physiological factors influencing aromatic utilization. In this report, we demonstrate that P. putida KT2440 increases its siderophore secretion in response to the availability of benzyl alcohol, a model aromatic substrate. It is argued that accelerated siderophore secretion in response to aromatic substrates provides an iron 'boost' which is required for the effective functioning of the iron-dependent oxygenases responsible for ring opening. Direct evidence for the cardinal role of siderophores in aromatic utilization is provided by evaluation of per capita siderophore secretion and comparative growth assessments of wild-type and siderophore-negative mutant strains grown on an alternative carbon source. Accelerated siderophore secretion can be viewed as a compensatory mechanism in P. putida in the context of its inability to secrete more than one type of siderophore (pyoverdine) or to utilize heterologous siderophores. Stimulated siderophore secretion might be a key factor in successful integration and proliferation of this organism as a bio-augmentation agent for aromatic degradation. It not only facilitates efficient aromatic utilization, but also provides better opportunities for iron assimilation amongst diverse microbial communities, thereby ensuring better survival and proliferation.