Low voltage electrowetting-on-dielectric

电润湿 电介质 材料科学 含氟聚合物 无定形固体 接触角 复合材料 润湿 高-κ电介质 电容 光电子学 电极 化学 聚合物 物理化学 有机化学
作者
Hyejin Moon,Sung Kwon Cho,Robin L. Garrell,Chang‐Jin Kim
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:92 (7): 4080-4087 被引量:659
标识
DOI:10.1063/1.1504171
摘要

This article discusses and experimentally verifies how to lower the operating voltage that drives liquid droplets by the principle of electrowetting on dielectric (EWOD). A significant contact angle change (120°→80°) is desired to reliably pump the droplet in microchannels for applications such as lab-on-a-chip or micrototal analysis systems. Typically, much higher voltages (>100 V) are used to change the wettability of an electrolyte droplet on a dielectric layer compared with a conductive layer. The required voltage can be reduced by increasing the dielectric constant and decreasing the thickness of the dielectric layer, thus increasing the capacitance of the insulating layer. This dependence of applied voltage on dielectric thickness is confirmed through EWOD experiments for three different dielectric materials of varying thickness: Amorphous fluoropolymer (Teflon® AF, Dupont), silicon dioxide (SiO2) and parylene. The dependence on the dielectric constant is confirmed with two different dielectric materials of similar thickness: SiO2 and barium strontium titanate. In all cases, the surface is coated with a very thin (200 Å) layer of amorphous fluoropolymer to provide initial hydrophobicity. Limiting factors such as the dielectric breakdown and electrolysis are also discussed. By using very thin (700 Å) and high dielectric constant (∼180) materials, a significant contact angle change (120°→80°) has been achieved with voltages as low as 15 V. Based on these results, a microfluidic device has been fabricated and tested, demonstrating successful transporting (pumping) of a 460 nL water droplet with only 15 V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助uu采纳,获得10
刚刚
灵巧飞烟完成签到,获得积分10
刚刚
hettsfs完成签到,获得积分10
刚刚
灰灰发布了新的文献求助10
刚刚
刚刚
1秒前
隐形曼青应助dengzh采纳,获得10
1秒前
1秒前
眼睛大曼凡给眼睛大曼凡的求助进行了留言
2秒前
Livan发布了新的文献求助10
2秒前
打打应助dan采纳,获得10
2秒前
汉堡包应助Kaka采纳,获得10
3秒前
4秒前
王俊完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
dzm317驳回了Akim应助
5秒前
明明就发布了新的文献求助10
5秒前
6秒前
可爱的函函应助后知不觉采纳,获得10
6秒前
6秒前
小乔发布了新的文献求助10
6秒前
7秒前
7秒前
Allen完成签到,获得积分10
7秒前
Lucas应助cmy采纳,获得10
7秒前
young完成签到,获得积分10
8秒前
21完成签到,获得积分10
8秒前
华仔应助框框采纳,获得10
8秒前
甜甜秋寒完成签到,获得积分20
8秒前
9秒前
Owen应助高高很厉害采纳,获得10
9秒前
9秒前
9秒前
10秒前
刘肥肥完成签到,获得积分10
10秒前
10秒前
yfn发布了新的文献求助10
10秒前
12发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608560
求助须知:如何正确求助?哪些是违规求助? 4693225
关于积分的说明 14877335
捐赠科研通 4717884
什么是DOI,文献DOI怎么找? 2544255
邀请新用户注册赠送积分活动 1509400
关于科研通互助平台的介绍 1472836