Low voltage electrowetting-on-dielectric

电润湿 电介质 材料科学 含氟聚合物 无定形固体 接触角 复合材料 润湿 高-κ电介质 电容 光电子学 电极 化学 聚合物 物理化学 有机化学
作者
Hyejin Moon,Sung Kwon Cho,Robin L. Garrell,Chang‐Jin Kim
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:92 (7): 4080-4087 被引量:651
标识
DOI:10.1063/1.1504171
摘要

This article discusses and experimentally verifies how to lower the operating voltage that drives liquid droplets by the principle of electrowetting on dielectric (EWOD). A significant contact angle change (120°→80°) is desired to reliably pump the droplet in microchannels for applications such as lab-on-a-chip or micrototal analysis systems. Typically, much higher voltages (>100 V) are used to change the wettability of an electrolyte droplet on a dielectric layer compared with a conductive layer. The required voltage can be reduced by increasing the dielectric constant and decreasing the thickness of the dielectric layer, thus increasing the capacitance of the insulating layer. This dependence of applied voltage on dielectric thickness is confirmed through EWOD experiments for three different dielectric materials of varying thickness: Amorphous fluoropolymer (Teflon® AF, Dupont), silicon dioxide (SiO2) and parylene. The dependence on the dielectric constant is confirmed with two different dielectric materials of similar thickness: SiO2 and barium strontium titanate. In all cases, the surface is coated with a very thin (200 Å) layer of amorphous fluoropolymer to provide initial hydrophobicity. Limiting factors such as the dielectric breakdown and electrolysis are also discussed. By using very thin (700 Å) and high dielectric constant (∼180) materials, a significant contact angle change (120°→80°) has been achieved with voltages as low as 15 V. Based on these results, a microfluidic device has been fabricated and tested, demonstrating successful transporting (pumping) of a 460 nL water droplet with only 15 V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Raul发布了新的文献求助10
5秒前
6秒前
明明完成签到,获得积分10
6秒前
Yukangqian完成签到,获得积分20
6秒前
王饼干完成签到,获得积分10
7秒前
噗噗发布了新的文献求助10
9秒前
追三发布了新的文献求助10
9秒前
10秒前
li完成签到,获得积分10
11秒前
12秒前
Raul完成签到,获得积分20
12秒前
12秒前
13秒前
小马甲应助xn201120采纳,获得150
15秒前
15秒前
pearer完成签到,获得积分10
16秒前
16秒前
Akim应助li采纳,获得10
16秒前
小冉完成签到,获得积分10
17秒前
李健的小迷弟应助蒋紫妍采纳,获得10
17秒前
18秒前
Later发布了新的文献求助10
18秒前
John完成签到,获得积分10
18秒前
19秒前
Yukangqian发布了新的文献求助10
20秒前
纸鸢发布了新的文献求助10
21秒前
22秒前
Wang0102完成签到,获得积分10
23秒前
SciGPT应助CyS采纳,获得10
23秒前
丘比特应助徐徐采纳,获得10
24秒前
24秒前
丽Li完成签到,获得积分10
24秒前
纸鸢完成签到,获得积分10
24秒前
FashionBoy应助mtw采纳,获得10
28秒前
苗苗发布了新的文献求助10
28秒前
爆米花应助何敏娟采纳,获得10
29秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976235
求助须知:如何正确求助?哪些是违规求助? 3520399
关于积分的说明 11203166
捐赠科研通 3256989
什么是DOI,文献DOI怎么找? 1798580
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516