Low voltage electrowetting-on-dielectric

电润湿 电介质 材料科学 含氟聚合物 无定形固体 接触角 复合材料 润湿 高-κ电介质 电容 光电子学 电极 化学 聚合物 有机化学 物理化学
作者
Hyejin Moon,Sung Kwon Cho,Robin L. Garrell,Chang‐Jin Kim
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:92 (7): 4080-4087 被引量:650
标识
DOI:10.1063/1.1504171
摘要

This article discusses and experimentally verifies how to lower the operating voltage that drives liquid droplets by the principle of electrowetting on dielectric (EWOD). A significant contact angle change (120°→80°) is desired to reliably pump the droplet in microchannels for applications such as lab-on-a-chip or micrototal analysis systems. Typically, much higher voltages (>100 V) are used to change the wettability of an electrolyte droplet on a dielectric layer compared with a conductive layer. The required voltage can be reduced by increasing the dielectric constant and decreasing the thickness of the dielectric layer, thus increasing the capacitance of the insulating layer. This dependence of applied voltage on dielectric thickness is confirmed through EWOD experiments for three different dielectric materials of varying thickness: Amorphous fluoropolymer (Teflon® AF, Dupont), silicon dioxide (SiO2) and parylene. The dependence on the dielectric constant is confirmed with two different dielectric materials of similar thickness: SiO2 and barium strontium titanate. In all cases, the surface is coated with a very thin (200 Å) layer of amorphous fluoropolymer to provide initial hydrophobicity. Limiting factors such as the dielectric breakdown and electrolysis are also discussed. By using very thin (700 Å) and high dielectric constant (∼180) materials, a significant contact angle change (120°→80°) has been achieved with voltages as low as 15 V. Based on these results, a microfluidic device has been fabricated and tested, demonstrating successful transporting (pumping) of a 460 nL water droplet with only 15 V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫小伙完成签到,获得积分10
1秒前
可爱的函函应助rtx00采纳,获得10
1秒前
眯眯眼的衬衫应助maozcmt采纳,获得10
1秒前
1秒前
怕孤独的友桃完成签到,获得积分20
2秒前
危机的如波完成签到,获得积分10
2秒前
老木虫发布了新的文献求助10
3秒前
独特从蓉完成签到,获得积分20
4秒前
Bellamie完成签到 ,获得积分10
4秒前
FashionBoy应助牛油火锅好吃采纳,获得10
4秒前
zhu发布了新的文献求助10
5秒前
Lin应助学者采纳,获得10
6秒前
Kkk发布了新的文献求助10
6秒前
7秒前
7秒前
yuqian完成签到,获得积分10
8秒前
13秒前
一期一会完成签到,获得积分10
14秒前
喜悦忆秋完成签到,获得积分10
14秒前
zzz完成签到,获得积分10
14秒前
研友_VZG7GZ应助容止采纳,获得10
16秒前
17秒前
17秒前
17秒前
17秒前
mcnt完成签到,获得积分10
18秒前
黄景瑜发布了新的文献求助10
19秒前
彭于晏应助神麒小雪采纳,获得10
20秒前
W0000完成签到,获得积分10
20秒前
龙龙发布了新的文献求助10
20秒前
椰椰发布了新的文献求助10
20秒前
李健应助Q_Q采纳,获得30
21秒前
李健的小迷弟应助罗拉采纳,获得10
21秒前
怡然行云发布了新的文献求助10
22秒前
闻闻文问发布了新的文献求助20
22秒前
JamesPei应助Xk16采纳,获得10
23秒前
W0000发布了新的文献求助10
23秒前
星辰大海应助科研通管家采纳,获得10
24秒前
十七应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770