Predicting the ultimate tensile strength of AISI 1045 steel and 2017-T4 aluminum alloy joints in a laser-assisted rotary friction welding process using machine learning: a comparison with response surface methodology

焊接 材料科学 响应面法 极限抗拉强度 转速 机械工程 支持向量机 摩擦焊接 激光功率缩放 感知器 梯度升压 合金 结构工程 复合材料 计算机科学 随机森林 激光器 人工神经网络 机器学习 工程类 物理 光学
作者
Germán Barrionuevo,José Luis Mullo,Jorge Ramos‐Grez
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:116 (3-4): 1247-1257 被引量:11
标识
DOI:10.1007/s00170-021-07469-6
摘要

Welding metal alloys with dissimilar melting points makes conventional welding processes not feasible to be used. Friction welding, on the other hand, has proven to be a promising technology. However, obtaining the welded joint’s mechanical properties with characteristics similar to the base materials remains a challenge. In the development of this work, several of the machine learning (ML) regressors (e.g., Gaussian process, decision tree, random forest, support vector machines, gradient boosting, and multi-layer perceptron) were evaluated for the prediction of the ultimate tensile strength (UTS) in joints of AISI 1045 steel and 2017-T4 aluminum alloy produced by rotary friction welding with laser assistance. A mixed design of experiments was employed to assess the effect of the rotation speed, friction pressure, and laser power over the UTS. Furthermore, the response surface methodology (RSM) was employed to determine an empirical equation for predicting the UTS, and contours maps determine the main interactions. A total of 48 specimens were employed to train the regressors; the 5-fold cross-validation methodology was used to find the algorithm with greater precision. The gradient boosting regressor (GBR), support vector regressor (SVR), and Gaussian processes regressors present the highest precision with a less than 3% percentage error for the laser-assisted rotary friction welding process. The GBR and SVR capability exceed the RSM’s accuracy with a coefficient of determination (R2) greater than 90.9 versus 83.2%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的冰彤完成签到,获得积分10
刚刚
小李发布了新的文献求助10
刚刚
Ruby完成签到,获得积分20
1秒前
方文杰发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
李扒皮发布了新的文献求助10
4秒前
4秒前
4秒前
田様应助HHH采纳,获得10
4秒前
每天都想吃东西完成签到 ,获得积分10
4秒前
7bruce完成签到,获得积分10
5秒前
大个应助纪糜采纳,获得10
5秒前
顺心夜南应助萝卜干采纳,获得50
5秒前
Yamsh完成签到,获得积分20
6秒前
悦己发布了新的文献求助30
6秒前
zh20130完成签到,获得积分10
6秒前
6秒前
lll发布了新的文献求助10
6秒前
没天赋发布了新的文献求助10
7秒前
鱼圆杂铺发布了新的文献求助10
7秒前
7秒前
啦啦啦123发布了新的文献求助10
7秒前
善学以致用应助111采纳,获得10
8秒前
8秒前
8秒前
NETO完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
如意白易发布了新的文献求助10
8秒前
烟花应助Robbie采纳,获得10
8秒前
英俊的铭应助肉鸡采纳,获得10
9秒前
9秒前
cy5982发布了新的文献求助10
10秒前
花根发布了新的文献求助10
10秒前
power完成签到,获得积分10
11秒前
茗泠发布了新的文献求助10
11秒前
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099