Predicting the ultimate tensile strength of AISI 1045 steel and 2017-T4 aluminum alloy joints in a laser-assisted rotary friction welding process using machine learning: a comparison with response surface methodology

焊接 材料科学 响应面法 极限抗拉强度 转速 机械工程 支持向量机 摩擦焊接 激光功率缩放 感知器 梯度升压 合金 结构工程 复合材料 计算机科学 随机森林 激光器 人工神经网络 机器学习 工程类 光学 物理
作者
Germán Barrionuevo,José Luis Mullo,Jorge Ramos‐Grez
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:116 (3-4): 1247-1257 被引量:11
标识
DOI:10.1007/s00170-021-07469-6
摘要

Welding metal alloys with dissimilar melting points makes conventional welding processes not feasible to be used. Friction welding, on the other hand, has proven to be a promising technology. However, obtaining the welded joint’s mechanical properties with characteristics similar to the base materials remains a challenge. In the development of this work, several of the machine learning (ML) regressors (e.g., Gaussian process, decision tree, random forest, support vector machines, gradient boosting, and multi-layer perceptron) were evaluated for the prediction of the ultimate tensile strength (UTS) in joints of AISI 1045 steel and 2017-T4 aluminum alloy produced by rotary friction welding with laser assistance. A mixed design of experiments was employed to assess the effect of the rotation speed, friction pressure, and laser power over the UTS. Furthermore, the response surface methodology (RSM) was employed to determine an empirical equation for predicting the UTS, and contours maps determine the main interactions. A total of 48 specimens were employed to train the regressors; the 5-fold cross-validation methodology was used to find the algorithm with greater precision. The gradient boosting regressor (GBR), support vector regressor (SVR), and Gaussian processes regressors present the highest precision with a less than 3% percentage error for the laser-assisted rotary friction welding process. The GBR and SVR capability exceed the RSM’s accuracy with a coefficient of determination (R2) greater than 90.9 versus 83.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yatou5651发布了新的文献求助10
刚刚
刚刚
许子健发布了新的文献求助10
1秒前
nini发布了新的文献求助10
1秒前
1秒前
开朗的山彤应助张阿童木采纳,获得10
1秒前
追寻依风发布了新的文献求助10
1秒前
隐形曼青应助雾昂采纳,获得10
1秒前
2秒前
betsy发布了新的文献求助10
3秒前
wuhuhu关注了科研通微信公众号
3秒前
eAN完成签到,获得积分10
3秒前
zl完成签到,获得积分10
3秒前
桐桐应助yyyhhh采纳,获得10
3秒前
4秒前
亓大大发布了新的文献求助10
4秒前
香蕉觅云应助反方向的钟采纳,获得30
4秒前
hqy发布了新的文献求助20
4秒前
852应助Gotyababy采纳,获得10
4秒前
seven发布了新的文献求助10
5秒前
PAN完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助Han采纳,获得10
6秒前
太阳发布了新的文献求助10
6秒前
Mia完成签到,获得积分10
6秒前
飞飞发布了新的文献求助10
6秒前
Yu发布了新的文献求助10
6秒前
zyq发布了新的文献求助10
7秒前
黄丁文完成签到,获得积分20
7秒前
7秒前
风中的曼彤完成签到 ,获得积分10
8秒前
复杂的语蕊完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
nini完成签到,获得积分10
8秒前
疯狂的猕猴桃完成签到 ,获得积分10
8秒前
科研小能手完成签到,获得积分10
9秒前
科研通AI5应助大方小白采纳,获得10
9秒前
科目三应助岩追研采纳,获得10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646