Predicting the ultimate tensile strength of AISI 1045 steel and 2017-T4 aluminum alloy joints in a laser-assisted rotary friction welding process using machine learning: a comparison with response surface methodology

焊接 材料科学 响应面法 极限抗拉强度 转速 机械工程 支持向量机 摩擦焊接 激光功率缩放 感知器 梯度升压 合金 结构工程 复合材料 计算机科学 随机森林 激光器 人工神经网络 机器学习 工程类 物理 光学
作者
Germán Barrionuevo,José Luis Mullo,Jorge Ramos‐Grez
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:116 (3-4): 1247-1257 被引量:11
标识
DOI:10.1007/s00170-021-07469-6
摘要

Welding metal alloys with dissimilar melting points makes conventional welding processes not feasible to be used. Friction welding, on the other hand, has proven to be a promising technology. However, obtaining the welded joint’s mechanical properties with characteristics similar to the base materials remains a challenge. In the development of this work, several of the machine learning (ML) regressors (e.g., Gaussian process, decision tree, random forest, support vector machines, gradient boosting, and multi-layer perceptron) were evaluated for the prediction of the ultimate tensile strength (UTS) in joints of AISI 1045 steel and 2017-T4 aluminum alloy produced by rotary friction welding with laser assistance. A mixed design of experiments was employed to assess the effect of the rotation speed, friction pressure, and laser power over the UTS. Furthermore, the response surface methodology (RSM) was employed to determine an empirical equation for predicting the UTS, and contours maps determine the main interactions. A total of 48 specimens were employed to train the regressors; the 5-fold cross-validation methodology was used to find the algorithm with greater precision. The gradient boosting regressor (GBR), support vector regressor (SVR), and Gaussian processes regressors present the highest precision with a less than 3% percentage error for the laser-assisted rotary friction welding process. The GBR and SVR capability exceed the RSM’s accuracy with a coefficient of determination (R2) greater than 90.9 versus 83.2%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月应助等待的忆翠采纳,获得10
刚刚
DDD发布了新的文献求助10
刚刚
传奇3应助叶宇豪采纳,获得10
2秒前
且做等春树完成签到,获得积分10
3秒前
3秒前
A666发布了新的文献求助10
3秒前
280应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
280应助科研通管家采纳,获得10
5秒前
nancy应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得30
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
盛小铃发布了新的文献求助10
8秒前
8秒前
9秒前
方方发布了新的文献求助10
9秒前
皛川完成签到,获得积分20
9秒前
10秒前
CD完成签到,获得积分10
10秒前
11秒前
Ava应助糊涂的剑采纳,获得10
11秒前
Hunter发布了新的文献求助10
11秒前
12秒前
送你一匹马完成签到,获得积分10
12秒前
搜集达人应助lingxu采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
DDD完成签到,获得积分10
17秒前
糊涂的剑完成签到,获得积分10
17秒前
xu给细胞在江山在的求助进行了留言
17秒前
兔子发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632465
求助须知:如何正确求助?哪些是违规求助? 4726925
关于积分的说明 14982122
捐赠科研通 4790432
什么是DOI,文献DOI怎么找? 2558280
邀请新用户注册赠送积分活动 1518679
关于科研通互助平台的介绍 1479141