亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the ultimate tensile strength of AISI 1045 steel and 2017-T4 aluminum alloy joints in a laser-assisted rotary friction welding process using machine learning: a comparison with response surface methodology

焊接 材料科学 响应面法 极限抗拉强度 转速 机械工程 支持向量机 摩擦焊接 激光功率缩放 感知器 梯度升压 合金 结构工程 复合材料 计算机科学 随机森林 激光器 人工神经网络 机器学习 工程类 物理 光学
作者
Germán Barrionuevo,José Luis Mullo,Jorge Ramos‐Grez
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:116 (3-4): 1247-1257 被引量:11
标识
DOI:10.1007/s00170-021-07469-6
摘要

Welding metal alloys with dissimilar melting points makes conventional welding processes not feasible to be used. Friction welding, on the other hand, has proven to be a promising technology. However, obtaining the welded joint’s mechanical properties with characteristics similar to the base materials remains a challenge. In the development of this work, several of the machine learning (ML) regressors (e.g., Gaussian process, decision tree, random forest, support vector machines, gradient boosting, and multi-layer perceptron) were evaluated for the prediction of the ultimate tensile strength (UTS) in joints of AISI 1045 steel and 2017-T4 aluminum alloy produced by rotary friction welding with laser assistance. A mixed design of experiments was employed to assess the effect of the rotation speed, friction pressure, and laser power over the UTS. Furthermore, the response surface methodology (RSM) was employed to determine an empirical equation for predicting the UTS, and contours maps determine the main interactions. A total of 48 specimens were employed to train the regressors; the 5-fold cross-validation methodology was used to find the algorithm with greater precision. The gradient boosting regressor (GBR), support vector regressor (SVR), and Gaussian processes regressors present the highest precision with a less than 3% percentage error for the laser-assisted rotary friction welding process. The GBR and SVR capability exceed the RSM’s accuracy with a coefficient of determination (R2) greater than 90.9 versus 83.2%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助abc采纳,获得10
6秒前
辉辉完成签到,获得积分10
12秒前
诚心幻莲发布了新的文献求助10
21秒前
包破茧完成签到,获得积分0
24秒前
26秒前
40秒前
Criminology34举报迷路白枫求助涉嫌违规
49秒前
慕青应助keke采纳,获得10
52秒前
53秒前
53秒前
1分钟前
MchemG应助hu采纳,获得20
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
曾经白亦完成签到 ,获得积分10
1分钟前
doudou发布了新的文献求助10
1分钟前
1分钟前
doudou完成签到,获得积分10
1分钟前
abc发布了新的文献求助10
1分钟前
1分钟前
984295567完成签到,获得积分10
1分钟前
CipherSage应助keke采纳,获得10
1分钟前
genomed应助drsherlock采纳,获得10
1分钟前
韩寒完成签到 ,获得积分10
1分钟前
JEK发布了新的文献求助10
1分钟前
我是老大应助小正采纳,获得10
1分钟前
xuanjiawu完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
keke发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
loser完成签到 ,获得积分10
2分钟前
深情安青应助abc采纳,获得10
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
zeice完成签到 ,获得积分10
2分钟前
2分钟前
王一一完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606564
求助须知:如何正确求助?哪些是违规求助? 4691031
关于积分的说明 14866772
捐赠科研通 4707326
什么是DOI,文献DOI怎么找? 2542867
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276