Predicting the ultimate tensile strength of AISI 1045 steel and 2017-T4 aluminum alloy joints in a laser-assisted rotary friction welding process using machine learning: a comparison with response surface methodology

焊接 材料科学 响应面法 极限抗拉强度 转速 机械工程 支持向量机 摩擦焊接 激光功率缩放 感知器 梯度升压 合金 结构工程 复合材料 计算机科学 随机森林 激光器 人工神经网络 机器学习 工程类 物理 光学
作者
Germán Barrionuevo,José Luis Mullo,Jorge Ramos‐Grez
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:116 (3-4): 1247-1257 被引量:11
标识
DOI:10.1007/s00170-021-07469-6
摘要

Welding metal alloys with dissimilar melting points makes conventional welding processes not feasible to be used. Friction welding, on the other hand, has proven to be a promising technology. However, obtaining the welded joint’s mechanical properties with characteristics similar to the base materials remains a challenge. In the development of this work, several of the machine learning (ML) regressors (e.g., Gaussian process, decision tree, random forest, support vector machines, gradient boosting, and multi-layer perceptron) were evaluated for the prediction of the ultimate tensile strength (UTS) in joints of AISI 1045 steel and 2017-T4 aluminum alloy produced by rotary friction welding with laser assistance. A mixed design of experiments was employed to assess the effect of the rotation speed, friction pressure, and laser power over the UTS. Furthermore, the response surface methodology (RSM) was employed to determine an empirical equation for predicting the UTS, and contours maps determine the main interactions. A total of 48 specimens were employed to train the regressors; the 5-fold cross-validation methodology was used to find the algorithm with greater precision. The gradient boosting regressor (GBR), support vector regressor (SVR), and Gaussian processes regressors present the highest precision with a less than 3% percentage error for the laser-assisted rotary friction welding process. The GBR and SVR capability exceed the RSM’s accuracy with a coefficient of determination (R2) greater than 90.9 versus 83.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯一一应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
1秒前
OKOK应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
柯一一应助科研通管家采纳,获得10
1秒前
2秒前
3秒前
drfwjuikesv完成签到,获得积分10
4秒前
5秒前
宋阳完成签到,获得积分10
5秒前
5秒前
6秒前
清脆南蕾发布了新的文献求助10
7秒前
bkagyin应助杨秀玲采纳,获得10
7秒前
8秒前
爱听歌的寄云完成签到 ,获得积分10
9秒前
10秒前
2224536完成签到,获得积分10
11秒前
冷静丸子完成签到 ,获得积分10
11秒前
attitude发布了新的文献求助10
11秒前
维尼完成签到,获得积分10
12秒前
Owen应助123采纳,获得10
13秒前
13秒前
14秒前
愛迪完成签到,获得积分10
14秒前
15秒前
mzc发布了新的文献求助10
15秒前
张起灵完成签到 ,获得积分10
16秒前
17秒前
叶白山完成签到,获得积分10
17秒前
岱山完成签到,获得积分10
19秒前
20秒前
CD5522发布了新的文献求助10
21秒前
勤劳的老九应助欧阳正义采纳,获得10
22秒前
科研通AI5应助欧阳正义采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498