亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Vacuum-Assisted Biopsy to Identify Breast Cancer Patients With Pathologic Complete Response (ypT0 and ypN0) After Neoadjuvant Systemic Treatment for Omission of Breast and Axillary Surgery

医学 乳腺癌 癌症 乳腺活检 活检 腋窝 放射科 肿瘤科 新辅助治疗 内科学 乳腺摄影术
作者
André Pfob,Chris Sidey‐Gibbons,Geraldine Rauch,Bettina Thomas,Benedikt Schaefgen,Sherko Kuemmel,Toralf Reimer,Markus Hahn,Marc Thill,Jens‐Uwe Blohmer,John Hackmann,Wolfram Malter,Inga Bekes,Kay Friedrichs,Sebastian Wojcinski,Sylvie Joos,Stefan Paepke,Tom Degenhardt,Joachim Rom,Achim Rody
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:40 (17): 1903-1915 被引量:52
标识
DOI:10.1200/jco.21.02439
摘要

Neoadjuvant systemic treatment (NST) elicits a pathologic complete response in 40%-70% of women with breast cancer. These patients may not need surgery as all local tumor has already been eradicated by NST. However, nonsurgical approaches, including imaging or vacuum-assisted biopsy (VAB), were not able to accurately identify patients without residual cancer in the breast or axilla. We evaluated the feasibility of a machine learning algorithm (intelligent VAB) to identify exceptional responders to NST.We trained, tested, and validated a machine learning algorithm using patient, imaging, tumor, and VAB variables to detect residual cancer after NST (ypT+ or in situ or ypN+) before surgery. We used data from 318 women with cT1-3, cN0 or +, human epidermal growth factor receptor 2-positive, triple-negative, or high-proliferative Luminal B-like breast cancer who underwent VAB before surgery (ClinicalTrials.gov identifier: NCT02948764, RESPONDER trial). We used 10-fold cross-validation to train and test the algorithm, which was then externally validated using data of an independent trial (ClinicalTrials.gov identifier: NCT02575612). We compared findings with the histopathologic evaluation of the surgical specimen. We considered false-negative rate (FNR) and specificity to be the main outcomes.In the development set (n = 318) and external validation set (n = 45), the intelligent VAB showed an FNR of 0.0%-5.2%, a specificity of 37.5%-40.0%, and an area under the receiver operating characteristic curve of 0.91-0.92 to detect residual cancer (ypT+ or in situ or ypN+) after NST. Spiegelhalter's Z confirmed a well-calibrated model (z score -0.746, P = .228). FNR of the intelligent VAB was lower compared with imaging after NST, VAB alone, or combinations of both.An intelligent VAB algorithm can reliably exclude residual cancer after NST. The omission of breast and axillary surgery for these exceptional responders may be evaluated in future trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请输入昵称完成签到 ,获得积分10
1秒前
涵涵涵hh完成签到 ,获得积分10
1秒前
2秒前
clio完成签到,获得积分10
3秒前
4秒前
Boffican发布了新的文献求助10
7秒前
7秒前
坚守发布了新的文献求助10
8秒前
10秒前
啊哦发布了新的文献求助30
11秒前
12秒前
zhdhh发布了新的文献求助10
12秒前
D1fficulty完成签到,获得积分0
13秒前
iCorn完成签到,获得积分10
13秒前
影月完成签到,获得积分10
14秒前
Freedom完成签到 ,获得积分10
15秒前
16秒前
16秒前
黄黄黄完成签到 ,获得积分20
22秒前
乐观的非笑完成签到,获得积分10
26秒前
30秒前
30秒前
乐乐应助坚守采纳,获得10
31秒前
科研通AI6应助zhdhh采纳,获得10
32秒前
信陵君无忌完成签到,获得积分10
32秒前
li发布了新的文献求助10
35秒前
领导范儿应助哦噢藕采纳,获得10
37秒前
樱桃汽水怪兽完成签到,获得积分10
38秒前
li完成签到,获得积分10
41秒前
张张完成签到,获得积分10
41秒前
45秒前
哦噢藕完成签到,获得积分10
47秒前
49秒前
明理的蜗牛完成签到,获得积分10
49秒前
CJY发布了新的文献求助10
50秒前
小马甲应助科研通管家采纳,获得10
53秒前
优雅的大白菜完成签到 ,获得积分10
55秒前
桐桐应助少年啊采纳,获得10
57秒前
老北京完成签到,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264