Neural network-based integration of polygenic and clinical information: development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohort

生命银行 医学 队列 狼牙棒 内科学 一致性 弗雷明翰风险评分 人口 比例危险模型 队列研究 疾病 生物信息学 环境卫生 经皮冠状动脉介入治疗 生物 心肌梗塞
作者
Jakob Steinfeldt,Thore Buergel,Lukas Loock,Paul Kittner,Greg Ruyoga,Julius Upmeier zu Belzen,Simon Sasse,Henrik Strangalies,Lara Christmann,Noah Hollmann,Benedict Wolf,Brian А. Ference,John Deanfield,Ulf Landmesser,Roland Eils
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (2): e84-e94 被引量:21
标识
DOI:10.1016/s2589-7500(21)00249-1
摘要

In primary cardiovascular disease prevention, early identification of high-risk individuals is crucial. Genetic information allows for the stratification of genetic predispositions and lifetime risk of cardiovascular disease. However, towards clinical application, the added value over clinical predictors later in life is crucial. Currently, this genotype-phenotype relationship and implications for overall cardiovascular risk are unclear.In this study, we developed and validated a neural network-based risk model (NeuralCVD) integrating polygenic and clinical predictors in 395 713 cardiovascular disease-free participants from the UK Biobank cohort. The primary outcome was the first record of a major adverse cardiac event (MACE) within 10 years. We compared the NeuralCVD model with both established clinical scores (SCORE, ASCVD, and QRISK3 recalibrated to the UK Biobank cohort) and a linear Cox-Model, assessing risk discrimination, net reclassification, and calibration over 22 spatially distinct recruitment centres.The NeuralCVD score was well calibrated and improved on the best clinical baseline, QRISK3 (ΔConcordance index [C-index] 0·01, 95% CI 0·009-0·011; net reclassification improvement (NRI) 0·0488, 95% CI 0·0442-0·0534) and a Cox model (ΔC-index 0·003, 95% CI 0·002-0·004; NRI 0·0469, 95% CI 0·0429-0·0511) in risk discrimination and net reclassification. After adding polygenic scores we found further improvements on population level (ΔC-index 0·006, 95% CI 0·005-0·007; NRI 0·0116, 95% CI 0·0066-0·0159). Additionally, we identified an interaction of genetic information with the pre-existing clinical phenotype, not captured by conventional models. Additional high polygenic risk increased overall risk most in individuals with low to intermediate clinical risk, and age younger than 50 years.Our results demonstrated that the NeuralCVD score can estimate cardiovascular risk trajectories for primary prevention. NeuralCVD learns the transition of predictive information from genotype to phenotype and identifies individuals with high genetic predisposition before developing a severe clinical phenotype. This finding could improve the reprioritisation of otherwise low-risk individuals with a high genetic cardiovascular predisposition for preventive interventions.Charité-Universitätsmedizin Berlin, Einstein Foundation Berlin, and the Medical Informatics Initiative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的平安完成签到,获得积分20
刚刚
周士乐完成签到,获得积分10
刚刚
juan完成签到,获得积分10
1秒前
cheeselemon182完成签到,获得积分10
1秒前
英勇凝旋完成签到,获得积分10
2秒前
HopeStar发布了新的文献求助10
2秒前
2秒前
石幻枫完成签到 ,获得积分10
3秒前
生动盼秋发布了新的文献求助10
3秒前
韭黄发布了新的文献求助10
3秒前
Eliauk完成签到,获得积分10
4秒前
小野狼完成签到,获得积分10
4秒前
威武诺言完成签到,获得积分10
4秒前
fengye发布了新的文献求助10
4秒前
李东东完成签到 ,获得积分10
4秒前
Zn应助hulin_zjxu采纳,获得10
4秒前
海鸥海鸥发布了新的文献求助50
5秒前
小乔要努力变强完成签到,获得积分10
5秒前
YANG完成签到 ,获得积分10
5秒前
5秒前
在水一方应助马保国123采纳,获得10
5秒前
Jovid完成签到,获得积分10
6秒前
建成完成签到,获得积分10
6秒前
爆米花应助落落采纳,获得10
6秒前
852应助liu123479采纳,获得20
7秒前
7秒前
无情念之发布了新的文献求助10
7秒前
lilac应助Rocky采纳,获得10
7秒前
7秒前
深情安青应助OYE采纳,获得10
8秒前
8秒前
李爱国应助热情的阿猫桑采纳,获得10
8秒前
8秒前
8秒前
花花完成签到,获得积分10
9秒前
无花果应助韭黄采纳,获得10
9秒前
啦某某发布了新的文献求助20
10秒前
cc发布了新的文献求助30
10秒前
12秒前
一颗苹果完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759