Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis

脂类学 癌症 脂质代谢 阶段(地层学) 队列 肿瘤科 内科学 肺癌 医学 病理 生物 生物信息学 古生物学
作者
Guangxi Wang,Mantang Qiu,Xudong Xing,Juntuo Zhou,Hantao Yao,Mingru Li,Rong Yin,Yan Hou,Yang Li,Shuli Pan,Yuqing Huang,Fan Yang,Fan Bai,Honggang Nie,Shuangshuang Di,Limei Guo,Meng Zhu,Jun Wang,Yuxin Yin
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:14 (630) 被引量:120
标识
DOI:10.1126/scitranslmed.abk2756
摘要

Lung cancer is the leading cause of cancer mortality, and early detection is key to improving survival. However, there are no reliable blood-based tests currently available for early-stage lung cancer diagnosis. Here, we performed single-cell RNA sequencing of different early-stage lung cancers and found that lipid metabolism was broadly dysregulated in different cell types, with glycerophospholipid metabolism as the most altered lipid metabolism–related pathway. Untargeted lipidomics was carried out in an exploratory cohort of 311 participants. Through support vector machine algorithm-based and mass spectrum–based feature selection, we identified nine lipids (lysophosphatidylcholines 16:0, 18:0, and 20:4; phosphatidylcholines 16:0–18:1, 16:0–18:2, 18:0–18:1, 18:0–18:2, and 16:0–22:6; and triglycerides 16:0–18:1–18:1) as the features most important for early-stage cancer detection. Using these nine features, we developed a liquid chromatography–mass spectrometry (MS)–based targeted assay using multiple reaction monitoring. This target assay achieved 100.00% specificity on an independent validation cohort. In a hospital-based lung cancer screening cohort of 1036 participants examined by low-dose computed tomography and a prospective clinical cohort containing 109 participants, the assay reached more than 90.00% sensitivity and 92.00% specificity. Accordingly, matrix-assisted laser desorption/ionization MS imaging confirmed that the selected lipids were differentially expressed in early-stage lung cancer tissues in situ. This method, designated as Lung Cancer Artificial Intelligence Detector, may be useful for early detection of lung cancer or large-scale screening of high-risk populations for cancer prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪格森发布了新的文献求助10
2秒前
任大师兄应助xzn1123采纳,获得20
3秒前
自然的书易完成签到,获得积分10
3秒前
4秒前
腼腆的以蕊完成签到,获得积分20
4秒前
一只小小鸟完成签到 ,获得积分10
4秒前
搜集达人应助bjc采纳,获得10
5秒前
PPY应助MAY采纳,获得10
5秒前
5秒前
5秒前
muyi完成签到,获得积分10
6秒前
6秒前
7秒前
大个应助jkx采纳,获得10
7秒前
多多看文献应助墨冉采纳,获得10
7秒前
7秒前
Xiang Li发布了新的文献求助10
8秒前
8秒前
一只小小鸟关注了科研通微信公众号
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
cccxq发布了新的文献求助10
11秒前
king发布了新的文献求助10
12秒前
13秒前
13秒前
Xiang Li完成签到,获得积分10
13秒前
也一样发布了新的文献求助10
14秒前
21耶耶发布了新的文献求助30
14秒前
xxxxx应助wqq采纳,获得20
14秒前
15秒前
小苏打完成签到,获得积分10
15秒前
科研通AI5应助cccxq采纳,获得10
16秒前
ZgnomeshghT发布了新的文献求助10
19秒前
大秦帝国完成签到,获得积分10
20秒前
oopsabc完成签到,获得积分10
21秒前
汪格森完成签到,获得积分10
21秒前
累了就休息不是放弃完成签到,获得积分10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735018
求助须知:如何正确求助?哪些是违规求助? 3278902
关于积分的说明 10012243
捐赠科研通 2995542
什么是DOI,文献DOI怎么找? 1643492
邀请新用户注册赠送积分活动 781270
科研通“疑难数据库(出版商)”最低求助积分说明 749338