亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining sell-out data with shopper behaviour data for category performance measurement: The role of category conversion power

利用 产品类别 计算机科学 分析 数据科学 透视图(图形) 分类 产品(数学) 营销 知识管理 业务 计算机安全 人工智能 几何学 数学
作者
Federica Pascucci,Lorenzo Nardi,Luca Marinelli,Marina Paolanti,Emanuele Frontoni,Gian Luca Gregori
出处
期刊:Journal of Retailing and Consumer Services [Elsevier]
卷期号:65: 102880-102880 被引量:6
标识
DOI:10.1016/j.jretconser.2021.102880
摘要

Retailers need to manage a series of complex decisions relating to numerous products. To reduce this complexity, they have introduced category management practices, which consider groups of similar products (categories) that can be managed separately as single business units (SBUs). Although the concept that the store offer should be organised as a category mix and that this strategy allows for better overall store management is already consolidated, retailers still struggle to adopt an approach to the store performance measurement starting from a category level perspective. Nowadays, the available methods for measuring categories’ performance are quite limited. The current trend sees the measurement of category performance mainly based on sell-out data that are ill-equipped to fully address category management issues. Retailers should broaden their field of analysis not only by focusing on the product/sales perspective but also by including other methodologies such as shopper behaviour analysis. In this regard, the use of technology offers the retail sector new perspectives for those analysis. Therefore, we intend to contribute to the ongoing debate on the retail analytics topic by presenting a shopper behaviour analytics system for category management performance monitoring. More in detail, we could derive a new key performance indicator, category conversion power (CCP), aimed at analysing and comparing the single categories organised within the store. The research is based on a unique dataset obtained from a real-time locating system (RTLS), which allowed us to collect behavioural data togheter with sell-out data (from POS scanner). We argue that retailers could exploit this new analytical method to gain more understanding at the category level and therefore make data-driven decisions aimed at improving performance at the store level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋雨祝的账号完成签到,获得积分10
1秒前
11秒前
小绵羊完成签到 ,获得积分10
14秒前
18秒前
YE发布了新的文献求助10
21秒前
DD完成签到 ,获得积分10
21秒前
浦肯野应助内向耷采纳,获得60
33秒前
风止发布了新的文献求助10
33秒前
Drxie完成签到,获得积分10
34秒前
张同学快去做实验呀完成签到,获得积分10
43秒前
46秒前
bkagyin应助haokeyan采纳,获得10
1分钟前
Hart完成签到 ,获得积分10
1分钟前
善学以致用应助风止采纳,获得10
1分钟前
酷波er应助yupeijin采纳,获得10
1分钟前
1分钟前
1分钟前
风止发布了新的文献求助10
1分钟前
1分钟前
没有昵称发布了新的文献求助10
1分钟前
赘婿应助风止采纳,获得10
1分钟前
科研通AI5应助没有昵称采纳,获得10
1分钟前
1分钟前
852应助顺心的星月采纳,获得10
1分钟前
小pppp发布了新的文献求助10
1分钟前
刘大喜发布了新的文献求助10
1分钟前
小pppp完成签到,获得积分10
2分钟前
喵喵发布了新的文献求助230
2分钟前
2分钟前
2分钟前
86400完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助zhangyimg采纳,获得10
2分钟前
天天快乐应助Sahar采纳,获得10
2分钟前
2分钟前
2分钟前
uu发布了新的文献求助10
2分钟前
haokeyan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865