The relationship between text message sentiment and self-reported depression

概化理论 萧条(经济学) 心理学 人称代词 情绪分析 人口 临床心理学 人工智能 医学 计算机科学 发展心理学 经济 宏观经济学 语言学 哲学 环境卫生
作者
Tony Liu,Jonah Meyerhoff,Johannes C. Eichstaedt,Chris Karr,Susan M. Kaiser,Konrad P. Körding,David C. Mohr,Lyle Ungar
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:302: 7-14 被引量:38
标识
DOI:10.1016/j.jad.2021.12.048
摘要

Personal sensing has shown promise for detecting behavioral correlates of depression, but there is little work examining personal sensing of cognitive and affective states. Digital language, particularly through personal text messages, is one source that can measure these markers.We correlated privacy-preserving sentiment analysis of text messages with self-reported depression symptom severity. We enrolled 219 U.S. adults in a 16 week longitudinal observational study. Participants installed a personal sensing app on their phones, which administered self-report PHQ-8 assessments of their depression severity, collected phone sensor data, and computed anonymized language sentiment scores from their text messages. We also trained machine learning models for predicting end-of-study self-reported depression status using on blocks of phone sensor and text features.In correlation analyses, we find that degrees of depression, emotional, and personal pronoun language categories correlate most strongly with self-reported depression, validating prior literature. Our classification models which predict binary depression status achieve a leave-one-out AUC of 0.72 when only considering text features and 0.76 when combining text with other networked smartphone sensors.Participants were recruited from a panel that over-represented women, caucasians, and individuals with self-reported depression at baseline. As language use differs across demographic factors, generalizability beyond this population may be limited. The study period also coincided with the initial COVID-19 outbreak in the United States, which may have affected smartphone sensor data quality.Effective depression prediction through text message sentiment, especially when combined with other personal sensors, could enable comprehensive mental health monitoring and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Manphie应助满意的世界采纳,获得10
1秒前
尛鱻发布了新的文献求助10
1秒前
小蘑菇应助杀死周一采纳,获得10
2秒前
phraly完成签到,获得积分10
2秒前
帅气的杰瑞完成签到,获得积分10
2秒前
zhaojinming完成签到,获得积分20
2秒前
3秒前
思源应助汝桢采纳,获得10
4秒前
Yygz314完成签到,获得积分10
4秒前
义气幼珊发布了新的文献求助10
4秒前
共享精神应助shw采纳,获得30
4秒前
4秒前
周倩完成签到,获得积分10
5秒前
6秒前
壮观的哈密瓜完成签到,获得积分10
6秒前
加油小白菜完成签到,获得积分10
7秒前
9秒前
Akihi发布了新的文献求助20
10秒前
FashionBoy应助义气香芦采纳,获得10
10秒前
11秒前
尊敬吐司发布了新的文献求助10
11秒前
12秒前
华仔应助zhaojinming采纳,获得10
12秒前
12秒前
CipherSage应助默幻弦采纳,获得10
13秒前
bu2bujiaozsy完成签到,获得积分10
14秒前
蓝桥兰灯完成签到,获得积分10
14秒前
15秒前
16秒前
虚心求学完成签到,获得积分10
16秒前
科研通AI6应助欢喜大地采纳,获得10
16秒前
16秒前
17秒前
宋映梦完成签到 ,获得积分10
17秒前
aa完成签到,获得积分10
17秒前
17秒前
123发布了新的文献求助10
17秒前
HOKUTO完成签到,获得积分10
19秒前
奋斗草莓完成签到,获得积分10
20秒前
勤恳的半邪完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328673
求助须知:如何正确求助?哪些是违规求助? 4468375
关于积分的说明 13904790
捐赠科研通 4361352
什么是DOI,文献DOI怎么找? 2395710
邀请新用户注册赠送积分活动 1389235
关于科研通互助平台的介绍 1360022