The relationship between text message sentiment and self-reported depression

概化理论 萧条(经济学) 心理学 人称代词 情绪分析 人口 临床心理学 人工智能 医学 计算机科学 发展心理学 经济 宏观经济学 语言学 哲学 环境卫生
作者
Tony Liu,Jonah Meyerhoff,Johannes C. Eichstaedt,Chris Karr,Susan M. Kaiser,Konrad P. Körding,David C. Mohr,Lyle Ungar
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:302: 7-14 被引量:38
标识
DOI:10.1016/j.jad.2021.12.048
摘要

Personal sensing has shown promise for detecting behavioral correlates of depression, but there is little work examining personal sensing of cognitive and affective states. Digital language, particularly through personal text messages, is one source that can measure these markers.We correlated privacy-preserving sentiment analysis of text messages with self-reported depression symptom severity. We enrolled 219 U.S. adults in a 16 week longitudinal observational study. Participants installed a personal sensing app on their phones, which administered self-report PHQ-8 assessments of their depression severity, collected phone sensor data, and computed anonymized language sentiment scores from their text messages. We also trained machine learning models for predicting end-of-study self-reported depression status using on blocks of phone sensor and text features.In correlation analyses, we find that degrees of depression, emotional, and personal pronoun language categories correlate most strongly with self-reported depression, validating prior literature. Our classification models which predict binary depression status achieve a leave-one-out AUC of 0.72 when only considering text features and 0.76 when combining text with other networked smartphone sensors.Participants were recruited from a panel that over-represented women, caucasians, and individuals with self-reported depression at baseline. As language use differs across demographic factors, generalizability beyond this population may be limited. The study period also coincided with the initial COVID-19 outbreak in the United States, which may have affected smartphone sensor data quality.Effective depression prediction through text message sentiment, especially when combined with other personal sensors, could enable comprehensive mental health monitoring and intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助YZ采纳,获得10
1秒前
nn发布了新的文献求助10
1秒前
1秒前
2秒前
奋斗的雪曼完成签到,获得积分10
3秒前
发酱完成签到,获得积分10
4秒前
4秒前
CodeCraft应助Marshall采纳,获得10
5秒前
科研通AI2S应助负责语海采纳,获得10
5秒前
白桃汽水发布了新的文献求助20
6秒前
hxj纯法王完成签到,获得积分10
7秒前
8秒前
宝坤关注了科研通微信公众号
8秒前
8秒前
FashionBoy应助bunny采纳,获得10
8秒前
balance完成签到 ,获得积分10
9秒前
杜晓倩发布了新的文献求助10
10秒前
ding应助敏感小熊猫采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
lx完成签到,获得积分10
11秒前
Akim应助坚强的严青采纳,获得10
11秒前
lx发布了新的文献求助10
13秒前
薛冰雪发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
mayucong完成签到,获得积分10
16秒前
啦啦啦啦发布了新的文献求助10
17秒前
赘婿应助lqchenyue采纳,获得10
18秒前
ilc发布了新的文献求助10
18秒前
20秒前
Marshall发布了新的文献求助10
20秒前
华仔应助nn采纳,获得10
20秒前
我是老大应助nn采纳,获得10
20秒前
可爱的函函应助nn采纳,获得10
20秒前
zz发布了新的文献求助10
21秒前
22秒前
李健的小迷弟应助风清扬采纳,获得10
22秒前
22秒前
23秒前
调皮友安完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787270
求助须知:如何正确求助?哪些是违规求助? 5698214
关于积分的说明 15471663
捐赠科研通 4915798
什么是DOI,文献DOI怎么找? 2645932
邀请新用户注册赠送积分活动 1593599
关于科研通互助平台的介绍 1547917