Path Planning Based on the Improved RRT* Algorithm for the Mining Truck

算法 运动规划 随机树 计算机科学 数学优化 路径(计算) 过程(计算) 数学 机器人 人工智能 程序设计语言 操作系统
作者
Dong Wang,Shutong Zheng,Yanxi Ren,Danjie Du
出处
期刊:Computers, materials & continua 卷期号:71 (2): 3571-3587 被引量:13
标识
DOI:10.32604/cmc.2022.022183
摘要

Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process of growth target points is optimized. Secondly, the process of selecting the parent node is optimized and a Dubins curve is used to constraint it. Then, the expansion process from tree node to random point is optimized by the gravitational repulsion field method and dynamic step method. In the obstacle detection process, Dubins curve constraint is used, and the bidirectional RRT* algorithm is adopted to speed up the iteration of the algorithm. After that, the obtained paths are smoothed by using the greedy algorithm and cubic B-spline interpolation. In addition, to verify the superiority and correctness of the algorithm, an unmanned mining vehicle kinematic model in the form of front-wheel steering is developed based on the Ackermann steering principle and simulated for CoppeliaSim. In the simulation, the Stanley algorithm is used for path tracking and Reeds-Shepp curve to adjust the final parking attitude of the truck. Finally, the experimental comparison shows that the improved bidirectional RRT* algorithm performs well in the simulation experiment, and outperforms the common RRT* algorithm in various aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
Bond发布了新的文献求助10
1秒前
Fox完成签到 ,获得积分10
1秒前
2秒前
李小宁发布了新的文献求助10
2秒前
脑洞疼应助wen采纳,获得10
2秒前
fenghuo发布了新的文献求助10
3秒前
小胖饼饼完成签到,获得积分10
3秒前
4秒前
勤劳的白晴完成签到,获得积分10
4秒前
4秒前
霸气凡白发布了新的文献求助10
4秒前
完美世界应助喜欢朝雪采纳,获得10
4秒前
5秒前
5秒前
JianDan发布了新的文献求助10
5秒前
对手完成签到 ,获得积分10
5秒前
5秒前
5秒前
飞翔的霸天哥应助carl采纳,获得30
6秒前
frozensun应助David采纳,获得10
6秒前
Fiona000001发布了新的文献求助10
6秒前
完美世界应助闯关的KiKi采纳,获得10
7秒前
幸福的绿海完成签到,获得积分10
7秒前
顾矜应助yzy采纳,获得10
7秒前
7秒前
42421018关注了科研通微信公众号
7秒前
勤恳洙完成签到,获得积分10
7秒前
LYDZ2发布了新的文献求助10
8秒前
8秒前
无限大山完成签到,获得积分10
8秒前
ZhihaoYang发布了新的文献求助10
8秒前
酷酷水壶发布了新的文献求助10
9秒前
9秒前
科研通AI6应助fu采纳,获得10
9秒前
hhwoyebudong发布了新的文献求助10
10秒前
10秒前
36456657应助淼淼采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710