An Automatic Diagnose Method for Radiographic Bone Loss and Periodontitis Staging Using Deep Learning

射线照相术 牙周炎 牙科 口腔正畸科 医学 牙槽 下颌骨(节肢动物口器) 临床附着丧失 人工智能 计算机科学 放射科 植物 生物
作者
Sang Jeong Lee,Se-Ryong Kang,Su Yang,Minsuk Choi,Jo‐Eun Kim,Kyung-Hoe Huh,Sam-Sun Lee,Min-Suk Heo,Won-Jin Yi
出处
期刊:The Transactions of the Korean Institute of Electrical Engineers [The Korean Institute of Electrical Engineers]
卷期号:70 (12): 1891-1897
标识
DOI:10.5370/kiee.2021.70.12.1891
摘要

In this study, a deep learning hybrid framework was developed to automatically stage periodontitis in dental panoramic radiographs. The framework was proposed to automatically quantify the periodontal bone loss and classify periodontitis for each individual tooth into four stages according to the criteria that was proposed at the 2017 World Workshop. Radiographic bone level (or CEJ level) was detected using deep learning with a simple structure of the entire jaw in panoramic radiographs. Next, the percent ratio analysis of the radiographic bone loss combined the tooth long-axis with periodontal bone and CEJ levels. The percentage ratios can be used to automatically classify periodontal bone loss. Additionally, the number of missing teeth was quantified by detecting the position of the missing teeth in the panoramic radiographs. A multi-device study was also performed to verify the generality of the developed method. The mean absolute difference (MAD) between periodontitis stages by the automatic method and by the radiologists was 0.31 overall for all the teeth in the whole jaw. The MADs for the images from the multiple devices were 0.25, 0.34, and 0.35 for devices 1, 2, and 3, respectively. The developed method had a high accuracy, reliability, and generality when automatically diagnosing periodontal bone loss and the staging of periodontitis by the multi-device study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
shi hui应助科研通管家采纳,获得10
1秒前
积极问晴应助科研通管家采纳,获得10
1秒前
无名老大应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
芒果柠檬发布了新的文献求助10
2秒前
1111发布了新的文献求助10
2秒前
3秒前
3秒前
小蘑菇应助海问天采纳,获得10
3秒前
yydsyk完成签到,获得积分10
4秒前
Minelic完成签到,获得积分10
5秒前
汉堡包应助呼吸之野采纳,获得10
5秒前
大方溪流发布了新的文献求助10
5秒前
田様应助调皮万宝路采纳,获得10
5秒前
科研通AI5应助xgn采纳,获得10
6秒前
隐形的妙松应助12数据库采纳,获得10
6秒前
wanci应助zxy采纳,获得30
7秒前
7秒前
星辰大海应助tyzz采纳,获得30
7秒前
欢欢呀完成签到,获得积分10
8秒前
深渊与海完成签到,获得积分10
8秒前
wjq完成签到,获得积分10
8秒前
科研通AI5应助xxxx采纳,获得10
8秒前
10秒前
小马甲应助兴奋的宛亦采纳,获得10
10秒前
李健的小迷弟应助李李李采纳,获得10
10秒前
10秒前
驰驰完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
科研通AI5应助博利采纳,获得10
13秒前
13秒前
brick2024发布了新的文献求助10
14秒前
感动归尘发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160