材料科学
光催化
纳米纤维
化学工程
电场
异质结
静电纺丝
压电
复合材料
铁电性
纳米技术
光电子学
聚合物
有机化学
催化作用
电介质
工程类
化学
物理
量子力学
作者
Bi Fu,Jianjie Li,Huaide Jiang,Xiaoli He,Yanmei Ma,Jingke Wang,Chengzhi Hu
出处
期刊:Nano Energy
[Elsevier]
日期:2022-03-01
卷期号:93: 106841-106841
被引量:66
标识
DOI:10.1016/j.nanoen.2021.106841
摘要
Ferroelectric materials can generate a built-in electric field under strain, which can produce reactive oxygen species (ROS) for in-situ piezocatalysis via a series of redox reactions, or enhance photocatalytic activities through the separation of the photoinduced electron and hole pairs. In this study, the synergistic piezo-phototronic effect is enhanced by increasing the inner piezopotential of ferroelectric nanofibers in fibrous piezoelectric/oxide semiconductor heterostructures. Ferroelectric BaTiO3 nanofibers are fabricated by a sol-gel assisted electrospinning and subsequent annealing at 700 ºC for 2 h, 4 h, and 6 h, respectively (denoted as BT2H, BT4H, and BT6H). Piezoelectric force microscopy results reveal that the necklace-like BT6H nanofibers demonstrate the highest local piezoelectric coefficient d33 (42.7 pm V−1) than BT2H (26.3 pm V−1) and BT4H (37.8 pm V−1) nanofibers because BT6H nanofibers are composed of highly crystallized electric dipoles with single domain nanostructures. Additionally, [email protected]2 core-shell nanofibers are synthesized by a wet-chemical coating of TiO2 on BT6H nanofibers. Under both ultrasound and UV light irradiations, [email protected]2 core-shell nanofibers exhibit a high piezo-photocatalytic degradation rate constant of 6 × 10−2 min−1 because of the enhancement of the piezotronic effect by the high piezoelectricity of electric dipoles that promote the separation of the photoinduced electron and hole pairs. The enhancement of the synergistic piezo-phototronic effect is ascribed to the highly active reaction sites that are confined into the high specific surface area of the one-dimensional fibrous boundary of [email protected]2 core-shell nanofibers, beneficial for the migration of the interfacial charge carriers. This study presents a simple approach to improve the piezo-photocatalysis through modulating the crystallization and the size of electric dipoles, providing an efficient pathway for underpinning the coupling mechanism between the enhancement of local ferro/piezoelectricity and piezo-phototronic effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI