Multi-View Integrative Attention-Based Deep Representation Learning for Irregular Clinical Time-Series Data

计算机科学 插补(统计学) 人工智能 缺少数据 代表(政治) 时间序列 深度学习 机器学习 系列(地层学) 数据挖掘 政治学 生物 政治 古生物学 法学
作者
Yurim Lee,Eunji Jun,Jaehun Choi,Heung-Il Suk
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4270-4280 被引量:6
标识
DOI:10.1109/jbhi.2022.3172549
摘要

Electronic health record (EHR) data are sparse and irregular as they are recorded at irregular time intervals, and different clinical variables are measured at each observation point. In this work, to handle irregular multivariate time-series data, we consider the human knowledge of the aspects to be measured and time to measure them in different situations, known as multi-view features, which are indirectly represented in the data. We propose a scheme to realize multi-view features integration learning via a self-attention mechanism. Specifically, we devise a novel multi-integration attention module (MIAM) to extract complex information that is inherent in irregular time-series data. We explicitly learn the relationships among the observed values, missing indicators, and time interval between the consecutive observations in a simultaneous manner. In addition, we build an attention-based decoder as a missing value imputer that helps empower the representation learning of the interrelations among multi-view observations for the prediction task this decoder operates only in the training phase so that the final model is implemented in an imputation-free manner. We validated the effectiveness of our method over the public MIMIC-III and PhysioNet challenge 2012 datasets by comparing with and outperforming the state-of-the-art methods in three downstream tasks i.e. , prediction of the in-hospital mortality, prediction of the length of stay, and phenotyping. Moreover, we conduct a layer-wise relevance propagation (LRP) analysis based on case studies to highlight the explainability of the trained model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助豆皮采纳,获得10
2秒前
3秒前
香蕉觅云应助DK_fish采纳,获得10
4秒前
dizi完成签到,获得积分10
4秒前
chen应助被淹死的鱼采纳,获得10
6秒前
wangwang2168完成签到,获得积分10
6秒前
hoolemaker发布了新的文献求助10
7秒前
8秒前
哈哈哈发布了新的文献求助30
9秒前
充电宝应助大力沛萍采纳,获得10
9秒前
10秒前
p53完成签到,获得积分20
10秒前
科研民工完成签到,获得积分10
12秒前
Hnuy发布了新的文献求助30
12秒前
唐老丫完成签到,获得积分10
13秒前
16秒前
天天快乐应助半目清风泪采纳,获得10
17秒前
CipherSage应助javascript采纳,获得10
17秒前
劲秉应助刘一爱吃西瓜采纳,获得30
17秒前
岚叶发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
哈哈哈完成签到,获得积分20
18秒前
不安青牛应助Hnuy采纳,获得10
18秒前
悦悦呀完成签到,获得积分10
18秒前
19秒前
天上人间发布了新的文献求助10
19秒前
zho发布了新的文献求助10
19秒前
19秒前
21秒前
大力沛萍发布了新的文献求助10
22秒前
23秒前
Gardenia2001发布了新的文献求助10
23秒前
26秒前
Ava应助岚叶采纳,获得30
27秒前
joy完成签到,获得积分10
27秒前
王小磊完成签到,获得积分10
28秒前
方哒哒发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664