Leveraging artificial intelligence to predict ERG gene fusion status in prostate cancer

Erg公司 接收机工作特性 前列腺癌 TMPRS2型 医学 卷积神经网络 人工智能 融合基因 深度学习 前列腺 癌症 计算机科学 病理 计算生物学 内科学 基因 眼科 疾病 生物 遗传学 传染病(医学专业) 视网膜 2019年冠状病毒病(COVID-19)
作者
Vipulkumar Dadhania,Daniel González,Mustafa Yousif,Jerome Cheng,Todd M. Morgan,Daniel E. Spratt,Zachery R. Reichert,Rahul Mannan,Xiaoming Wang,Anya Chinnaiyan,Xuhong Cao,Saravana M. Dhanasekaran,Arul M. Chinnaiyan,Liron Pantanowitz,Rohit Mehra
出处
期刊:BMC Cancer [Springer Nature]
卷期号:22 (1) 被引量:12
标识
DOI:10.1186/s12885-022-09559-4
摘要

TMPRSS2-ERG gene rearrangement, the most common E26 transformation specific (ETS) gene fusion within prostate cancer, is known to contribute to the pathogenesis of this disease and carries diagnostic annotations for prostate cancer patients clinically. The ERG rearrangement status in prostatic adenocarcinoma currently cannot be reliably identified from histologic features on H&E-stained slides alone and hence requires ancillary studies such as immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) or next generation sequencing (NGS) for identification.OBJECTIVE: We accordingly sought to develop a deep learning-based algorithm to identify ERG rearrangement status in prostatic adenocarcinoma based on digitized slides of H&E morphology alone.Setting, and Participants: Whole slide images from 392 in-house and TCGA cases were employed and annotated using QuPath. Image patches of 224 × 224 pixel were exported at 10 ×, 20 ×, and 40 × for input into a deep learning model based on MobileNetV2 convolutional neural network architecture pre-trained on ImageNet. A separate model was trained for each magnification. Training and test datasets consisted of 261 cases and 131 cases, respectively. The output of the model included a prediction of ERG-positive (ERG rearranged) or ERG-negative (ERG not rearranged) status for each input patch.Various accuracy measurements including area under the curve (AUC) of the receiver operating characteristic (ROC) curves were used to evaluate the deep learning model.All models showed similar ROC curves with AUC results ranging between 0.82 and 0.85. The sensitivity and specificity of these models were 75.0% and 83.1% (20 × model), respectively.A deep learning-based model can successfully predict ERG rearrangement status in the majority of prostatic adenocarcinomas utilizing only H&E-stained digital slides. Such an artificial intelligence-based model can eliminate the need for using extra tumor tissue to perform ancillary studies in order to assess for ERG gene rearrangement in prostatic adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求求各位大哥救救小弟我吧完成签到,获得积分10
1秒前
夏青荷完成签到,获得积分10
3秒前
都是应助潇潇雨歇采纳,获得50
3秒前
曾经如风完成签到,获得积分10
4秒前
4秒前
精明一寡发布了新的文献求助10
4秒前
5秒前
喜悦恶天发布了新的文献求助10
5秒前
ddd完成签到,获得积分20
5秒前
6秒前
875728314完成签到,获得积分20
6秒前
home完成签到,获得积分10
6秒前
7秒前
8秒前
bookgg完成签到 ,获得积分10
8秒前
000发布了新的文献求助10
9秒前
深情安青应助Star采纳,获得30
9秒前
dawn发布了新的文献求助10
10秒前
小熊座a完成签到 ,获得积分10
11秒前
luqian完成签到,获得积分20
11秒前
pterionGao发布了新的文献求助10
12秒前
幸福完成签到,获得积分10
12秒前
12秒前
神勇傲儿发布了新的文献求助10
13秒前
NexusExplorer应助下文献采纳,获得10
13秒前
珊小宛发布了新的文献求助10
15秒前
15秒前
sssssnape完成签到,获得积分10
15秒前
小王子完成签到,获得积分20
16秒前
YQQQ发布了新的文献求助10
17秒前
汉堡包应助luqian采纳,获得10
18秒前
反方向的枫完成签到,获得积分10
19秒前
喜悦恶天完成签到,获得积分20
19秒前
vivianfou发布了新的文献求助10
21秒前
22秒前
传奇3应助嗑瓜子传奇采纳,获得10
22秒前
22秒前
23秒前
23秒前
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141588
求助须知:如何正确求助?哪些是违规求助? 2792521
关于积分的说明 7803368
捐赠科研通 2448740
什么是DOI,文献DOI怎么找? 1302918
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240