Leveraging artificial intelligence to predict ERG gene fusion status in prostate cancer

Erg公司 接收机工作特性 前列腺癌 TMPRS2型 医学 卷积神经网络 人工智能 融合基因 深度学习 前列腺 癌症 计算机科学 病理 计算生物学 内科学 基因 眼科 疾病 生物 遗传学 传染病(医学专业) 视网膜 2019年冠状病毒病(COVID-19)
作者
Vipulkumar Dadhania,Daniel González,Mustafa Yousif,Jerome Cheng,Todd M. Morgan,Daniel E. Spratt,Zachery R. Reichert,Rahul Mannan,Xiaoming Wang,Anya Chinnaiyan,Xuhong Cao,Saravana M. Dhanasekaran,Arul M. Chinnaiyan,Liron Pantanowitz,Rohit Mehra
出处
期刊:BMC Cancer [Springer Nature]
卷期号:22 (1) 被引量:12
标识
DOI:10.1186/s12885-022-09559-4
摘要

TMPRSS2-ERG gene rearrangement, the most common E26 transformation specific (ETS) gene fusion within prostate cancer, is known to contribute to the pathogenesis of this disease and carries diagnostic annotations for prostate cancer patients clinically. The ERG rearrangement status in prostatic adenocarcinoma currently cannot be reliably identified from histologic features on H&E-stained slides alone and hence requires ancillary studies such as immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) or next generation sequencing (NGS) for identification.OBJECTIVE: We accordingly sought to develop a deep learning-based algorithm to identify ERG rearrangement status in prostatic adenocarcinoma based on digitized slides of H&E morphology alone.Setting, and Participants: Whole slide images from 392 in-house and TCGA cases were employed and annotated using QuPath. Image patches of 224 × 224 pixel were exported at 10 ×, 20 ×, and 40 × for input into a deep learning model based on MobileNetV2 convolutional neural network architecture pre-trained on ImageNet. A separate model was trained for each magnification. Training and test datasets consisted of 261 cases and 131 cases, respectively. The output of the model included a prediction of ERG-positive (ERG rearranged) or ERG-negative (ERG not rearranged) status for each input patch.Various accuracy measurements including area under the curve (AUC) of the receiver operating characteristic (ROC) curves were used to evaluate the deep learning model.All models showed similar ROC curves with AUC results ranging between 0.82 and 0.85. The sensitivity and specificity of these models were 75.0% and 83.1% (20 × model), respectively.A deep learning-based model can successfully predict ERG rearrangement status in the majority of prostatic adenocarcinomas utilizing only H&E-stained digital slides. Such an artificial intelligence-based model can eliminate the need for using extra tumor tissue to perform ancillary studies in order to assess for ERG gene rearrangement in prostatic adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
合适的致远完成签到,获得积分10
3秒前
小马甲应助sgjj33采纳,获得10
5秒前
所所应助奋斗灵波采纳,获得10
6秒前
7秒前
慌糖完成签到,获得积分10
8秒前
liu完成签到,获得积分10
10秒前
柔弱凡松发布了新的文献求助10
12秒前
12秒前
14秒前
QQQQ发布了新的文献求助20
14秒前
zy完成签到 ,获得积分10
14秒前
坦率若颜发布了新的文献求助10
18秒前
terence应助YYJ25采纳,获得10
19秒前
21秒前
23秒前
23秒前
JianminLuo完成签到 ,获得积分10
24秒前
慌糖发布了新的文献求助10
24秒前
贪玩语蓉完成签到,获得积分10
25秒前
26秒前
heidi发布了新的文献求助10
27秒前
27秒前
CipherSage应助昵称采纳,获得10
27秒前
所得皆所愿完成签到 ,获得积分10
27秒前
英俊的铭应助浙江嘉兴采纳,获得10
29秒前
caoyy发布了新的文献求助10
30秒前
32秒前
花陵完成签到 ,获得积分10
32秒前
田様应助youjiang采纳,获得10
32秒前
lixm发布了新的文献求助10
33秒前
34秒前
春眠不觉小小酥完成签到,获得积分10
35秒前
35秒前
35秒前
JerryZ发布了新的文献求助10
36秒前
36秒前
wewe发布了新的文献求助30
39秒前
昵称发布了新的文献求助10
39秒前
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851