Ordering and Ranking Products for an Online Retailer

排名(信息检索) 业务 计量经济学 计算机科学 数学 情报检索
作者
Zijin Zhang,Hyun‐Soo Ahn,Lennart Baardman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4061071
摘要

In e-commerce, product ranking and display affect customer choices and sales as items placed in top positions receive significantly more clicks than items placed at the bottom. For retailers who sell items from the inventory they have purchased and owned, product ranking has a profound impact on future demand as well as the amount of inventory to be ordered before the selling season starts. However, in many cases, inventory ordering and product ranking decisions are made separately at different times by different functional departments with little or no coordination. One of the main challenges is that the complexity of product ranking problem grows exponentially as the number of products on display increases. In this paper, we show that it is important to consider inventory ordering and product ranking decisions as a joint problem, and study how this can be done. In a problem where products are ordered and ranked only once, we show that the joint ordering-and-ranking problem can be reformulated into an easier assignment problem built on a sequence of newsvendor solutions, and thereby there exists a polynomial-time algorithm that generates an optimal ordering-and-ranking policy. We then consider a problem where product rankings can be updated over time, the above algorithm that uses static ranking is indeed asymptotically optimal. We also provide an algorithm with ranking updates, which performs better than the static ranking algorithm in both asymptotic and non-asymptotic settings. We next extend to the problem where a retailer utilizes pre-season sales (or pre-orders) to learn about future demand. Building on our analytic results, we propose a two-phase online learning algorithm with a theoretical performance guarantee. Using computational experiments, we show that our proposed algorithms significantly outperform benchmarks including the current split decision-making practices, can be scaled up to make ranking and ordering decisions with a large number of products, and generate high-quality solutions even when the underlying customer choice model is misspecified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzy完成签到,获得积分10
1秒前
江风海韵完成签到,获得积分10
1秒前
奥特超曼应助zhq采纳,获得10
2秒前
4秒前
yydragen应助高梦祥采纳,获得50
4秒前
4秒前
悦耳如彤发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
9秒前
如意枫叶发布了新的文献求助10
10秒前
Lost发布了新的文献求助30
10秒前
风清扬应助呜呜呜采纳,获得10
11秒前
Lucas应助xyx采纳,获得10
12秒前
guoguo发布了新的文献求助10
12秒前
乂贰ZERO叁发布了新的文献求助10
12秒前
13秒前
可爱的函函应助Steven采纳,获得10
13秒前
ay完成签到,获得积分10
15秒前
蒙豆儿发布了新的文献求助10
15秒前
15秒前
Owen应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得20
16秒前
哈哈哈应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
泥嚎发布了新的文献求助10
18秒前
guoguo完成签到,获得积分10
18秒前
搜集达人应助麦子采纳,获得10
21秒前
小方发布了新的文献求助30
22秒前
JDT77发布了新的文献求助200
24秒前
暴躁的幼荷完成签到 ,获得积分10
25秒前
时老完成签到,获得积分10
26秒前
wmc1357完成签到,获得积分10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176