Ordering and Ranking Products for an Online Retailer

排名(信息检索) 业务 计量经济学 计算机科学 数学 情报检索
作者
Zijin Zhang,Hyun‐Soo Ahn,Lennart Baardman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4061071
摘要

In e-commerce, product ranking and display affect customer choices and sales as items placed in top positions receive significantly more clicks than items placed at the bottom. For retailers who sell items from the inventory they have purchased and owned, product ranking has a profound impact on future demand as well as the amount of inventory to be ordered before the selling season starts. However, in many cases, inventory ordering and product ranking decisions are made separately at different times by different functional departments with little or no coordination. One of the main challenges is that the complexity of product ranking problem grows exponentially as the number of products on display increases. In this paper, we show that it is important to consider inventory ordering and product ranking decisions as a joint problem, and study how this can be done. In a problem where products are ordered and ranked only once, we show that the joint ordering-and-ranking problem can be reformulated into an easier assignment problem built on a sequence of newsvendor solutions, and thereby there exists a polynomial-time algorithm that generates an optimal ordering-and-ranking policy. We then consider a problem where product rankings can be updated over time, the above algorithm that uses static ranking is indeed asymptotically optimal. We also provide an algorithm with ranking updates, which performs better than the static ranking algorithm in both asymptotic and non-asymptotic settings. We next extend to the problem where a retailer utilizes pre-season sales (or pre-orders) to learn about future demand. Building on our analytic results, we propose a two-phase online learning algorithm with a theoretical performance guarantee. Using computational experiments, we show that our proposed algorithms significantly outperform benchmarks including the current split decision-making practices, can be scaled up to make ranking and ordering decisions with a large number of products, and generate high-quality solutions even when the underlying customer choice model is misspecified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spinnin完成签到,获得积分10
1秒前
幸运草完成签到 ,获得积分10
1秒前
小children丙完成签到,获得积分10
1秒前
zhenzhen发布了新的文献求助10
1秒前
nicolight发布了新的文献求助10
1秒前
习习应助易安采纳,获得10
1秒前
云青完成签到,获得积分10
1秒前
科目三应助二二二采纳,获得10
1秒前
felix发布了新的文献求助10
1秒前
Lucas应助圆滑的铁勺采纳,获得10
2秒前
2秒前
2秒前
锦诗完成签到,获得积分10
2秒前
2秒前
板凳发布了新的文献求助10
2秒前
xzy完成签到,获得积分10
3秒前
科研通AI5应助蘑菇采纳,获得10
3秒前
papa完成签到 ,获得积分10
4秒前
4秒前
sss发布了新的文献求助10
4秒前
chinning发布了新的文献求助10
4秒前
小胖鱼发布了新的文献求助10
5秒前
dzdzn关注了科研通微信公众号
5秒前
共享精神应助Zhaorf采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
peikyang发布了新的文献求助10
7秒前
藤原拓海完成签到,获得积分10
7秒前
π1完成签到 ,获得积分10
7秒前
zhangqi发布了新的文献求助10
7秒前
CCL应助wjj采纳,获得20
8秒前
8秒前
单于天宇完成签到,获得积分10
8秒前
8秒前
畅快的南风完成签到,获得积分10
9秒前
猪猪hero完成签到,获得积分10
9秒前
要减肥冰菱完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678