Ordering and Ranking Products for an Online Retailer

排名(信息检索) 业务 计量经济学 计算机科学 数学 情报检索
作者
Zijin Zhang,Hyun‐Soo Ahn,Lennart Baardman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4061071
摘要

In e-commerce, product ranking and display affect customer choices and sales as items placed in top positions receive significantly more clicks than items placed at the bottom. For retailers who sell items from the inventory they have purchased and owned, product ranking has a profound impact on future demand as well as the amount of inventory to be ordered before the selling season starts. However, in many cases, inventory ordering and product ranking decisions are made separately at different times by different functional departments with little or no coordination. One of the main challenges is that the complexity of product ranking problem grows exponentially as the number of products on display increases. In this paper, we show that it is important to consider inventory ordering and product ranking decisions as a joint problem, and study how this can be done. In a problem where products are ordered and ranked only once, we show that the joint ordering-and-ranking problem can be reformulated into an easier assignment problem built on a sequence of newsvendor solutions, and thereby there exists a polynomial-time algorithm that generates an optimal ordering-and-ranking policy. We then consider a problem where product rankings can be updated over time, the above algorithm that uses static ranking is indeed asymptotically optimal. We also provide an algorithm with ranking updates, which performs better than the static ranking algorithm in both asymptotic and non-asymptotic settings. We next extend to the problem where a retailer utilizes pre-season sales (or pre-orders) to learn about future demand. Building on our analytic results, we propose a two-phase online learning algorithm with a theoretical performance guarantee. Using computational experiments, we show that our proposed algorithms significantly outperform benchmarks including the current split decision-making practices, can be scaled up to make ranking and ordering decisions with a large number of products, and generate high-quality solutions even when the underlying customer choice model is misspecified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助闫HH采纳,获得10
1秒前
2秒前
2秒前
传奇3应助Marts采纳,获得10
3秒前
Jun发布了新的文献求助10
3秒前
3秒前
Zzz完成签到,获得积分10
4秒前
田yg完成签到,获得积分10
4秒前
漂亮忆南发布了新的文献求助10
4秒前
思源应助SUNYAOSUNYAO采纳,获得10
5秒前
Knight发布了新的文献求助10
6秒前
Tu发布了新的文献求助10
6秒前
李ny完成签到,获得积分20
6秒前
6秒前
郭竞阳完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
科研通AI6应助百特曼采纳,获得10
8秒前
科研通AI2S应助浮浮世世采纳,获得10
8秒前
Camille完成签到,获得积分10
8秒前
9秒前
情怀应助Sarina采纳,获得10
10秒前
10秒前
10秒前
歪歪完成签到,获得积分10
10秒前
yao应助傻傻的影儿采纳,获得10
10秒前
11秒前
兴奋蘑菇发布了新的文献求助30
11秒前
ddd发布了新的文献求助10
11秒前
Akim应助黑囡采纳,获得10
11秒前
12秒前
冰冰发布了新的文献求助10
12秒前
12秒前
77发布了新的文献求助10
12秒前
13秒前
nananaa发布了新的文献求助10
14秒前
14秒前
lixiaolu完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505946
求助须知:如何正确求助?哪些是违规求助? 4601465
关于积分的说明 14476523
捐赠科研通 4535397
什么是DOI,文献DOI怎么找? 2485351
邀请新用户注册赠送积分活动 1468337
关于科研通互助平台的介绍 1440869