Ordering and Ranking Products for an Online Retailer

排名(信息检索) 业务 计量经济学 计算机科学 数学 情报检索
作者
Zijin Zhang,Hyun‐Soo Ahn,Lennart Baardman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4061071
摘要

In e-commerce, product ranking and display affect customer choices and sales as items placed in top positions receive significantly more clicks than items placed at the bottom. For retailers who sell items from the inventory they have purchased and owned, product ranking has a profound impact on future demand as well as the amount of inventory to be ordered before the selling season starts. However, in many cases, inventory ordering and product ranking decisions are made separately at different times by different functional departments with little or no coordination. One of the main challenges is that the complexity of product ranking problem grows exponentially as the number of products on display increases. In this paper, we show that it is important to consider inventory ordering and product ranking decisions as a joint problem, and study how this can be done. In a problem where products are ordered and ranked only once, we show that the joint ordering-and-ranking problem can be reformulated into an easier assignment problem built on a sequence of newsvendor solutions, and thereby there exists a polynomial-time algorithm that generates an optimal ordering-and-ranking policy. We then consider a problem where product rankings can be updated over time, the above algorithm that uses static ranking is indeed asymptotically optimal. We also provide an algorithm with ranking updates, which performs better than the static ranking algorithm in both asymptotic and non-asymptotic settings. We next extend to the problem where a retailer utilizes pre-season sales (or pre-orders) to learn about future demand. Building on our analytic results, we propose a two-phase online learning algorithm with a theoretical performance guarantee. Using computational experiments, we show that our proposed algorithms significantly outperform benchmarks including the current split decision-making practices, can be scaled up to make ranking and ordering decisions with a large number of products, and generate high-quality solutions even when the underlying customer choice model is misspecified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy.he应助小张采纳,获得10
刚刚
1秒前
JX完成签到,获得积分10
1秒前
2秒前
3秒前
7473发布了新的文献求助10
4秒前
4秒前
BowieHuang应助JX采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
maple完成签到,获得积分10
6秒前
JamesPei应助Aiuuu采纳,获得10
7秒前
xx发布了新的文献求助10
7秒前
SS完成签到,获得积分0
8秒前
BoBo完成签到 ,获得积分10
8秒前
希望天下0贩的0应助aaaaa采纳,获得10
8秒前
9秒前
LeeFY发布了新的文献求助10
9秒前
9秒前
宋佳完成签到 ,获得积分20
10秒前
机灵的丹寒完成签到 ,获得积分10
10秒前
11秒前
12秒前
咕噜肉完成签到,获得积分10
13秒前
上善若水完成签到 ,获得积分10
13秒前
15秒前
16秒前
王小雯发布了新的文献求助10
16秒前
lxl发布了新的文献求助10
16秒前
健忘的曼卉完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
wert发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
19秒前
20秒前
20秒前
852应助xx采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769914
求助须知:如何正确求助?哪些是违规求助? 5582213
关于积分的说明 15422997
捐赠科研通 4903501
什么是DOI,文献DOI怎么找? 2638224
邀请新用户注册赠送积分活动 1586106
关于科研通互助平台的介绍 1541280