Ordering and Ranking Products for an Online Retailer

排名(信息检索) 业务 计量经济学 计算机科学 数学 情报检索
作者
Zijin Zhang,Hyun‐Soo Ahn,Lennart Baardman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4061071
摘要

In e-commerce, product ranking and display affect customer choices and sales as items placed in top positions receive significantly more clicks than items placed at the bottom. For retailers who sell items from the inventory they have purchased and owned, product ranking has a profound impact on future demand as well as the amount of inventory to be ordered before the selling season starts. However, in many cases, inventory ordering and product ranking decisions are made separately at different times by different functional departments with little or no coordination. One of the main challenges is that the complexity of product ranking problem grows exponentially as the number of products on display increases. In this paper, we show that it is important to consider inventory ordering and product ranking decisions as a joint problem, and study how this can be done. In a problem where products are ordered and ranked only once, we show that the joint ordering-and-ranking problem can be reformulated into an easier assignment problem built on a sequence of newsvendor solutions, and thereby there exists a polynomial-time algorithm that generates an optimal ordering-and-ranking policy. We then consider a problem where product rankings can be updated over time, the above algorithm that uses static ranking is indeed asymptotically optimal. We also provide an algorithm with ranking updates, which performs better than the static ranking algorithm in both asymptotic and non-asymptotic settings. We next extend to the problem where a retailer utilizes pre-season sales (or pre-orders) to learn about future demand. Building on our analytic results, we propose a two-phase online learning algorithm with a theoretical performance guarantee. Using computational experiments, we show that our proposed algorithms significantly outperform benchmarks including the current split decision-making practices, can be scaled up to make ranking and ordering decisions with a large number of products, and generate high-quality solutions even when the underlying customer choice model is misspecified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
同瓜不同命完成签到,获得积分10
刚刚
牛马哥发布了新的文献求助10
1秒前
温婉的松鼠完成签到,获得积分10
1秒前
2秒前
辛勤的寄瑶完成签到,获得积分10
2秒前
Lauren完成签到 ,获得积分10
3秒前
4秒前
忆枫完成签到,获得积分10
8秒前
炒鸡小将发布了新的文献求助10
8秒前
花壳在逃野猪完成签到 ,获得积分10
8秒前
8秒前
银子吃好的完成签到,获得积分10
9秒前
西瓜霜完成签到 ,获得积分10
9秒前
科研废物完成签到 ,获得积分10
11秒前
冬月完成签到,获得积分10
11秒前
11秒前
马东完成签到,获得积分10
13秒前
搜集达人应助动听的秋白采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
华仔应助炒鸡小将采纳,获得10
15秒前
chizhi完成签到,获得积分10
15秒前
雪雨夜心应助白智妍采纳,获得10
16秒前
祁乐安发布了新的文献求助20
17秒前
fang应助科研通管家采纳,获得10
18秒前
梵高的向日葵完成签到,获得积分10
18秒前
Singularity应助科研通管家采纳,获得10
18秒前
清爽的碧空完成签到,获得积分10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
fang应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得30
19秒前
fang应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029