亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ordering and Ranking Products for an Online Retailer

排名(信息检索) 业务 计量经济学 计算机科学 数学 情报检索
作者
Zijin Zhang,Hyun‐Soo Ahn,Lennart Baardman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4061071
摘要

In e-commerce, product ranking and display affect customer choices and sales as items placed in top positions receive significantly more clicks than items placed at the bottom. For retailers who sell items from the inventory they have purchased and owned, product ranking has a profound impact on future demand as well as the amount of inventory to be ordered before the selling season starts. However, in many cases, inventory ordering and product ranking decisions are made separately at different times by different functional departments with little or no coordination. One of the main challenges is that the complexity of product ranking problem grows exponentially as the number of products on display increases. In this paper, we show that it is important to consider inventory ordering and product ranking decisions as a joint problem, and study how this can be done. In a problem where products are ordered and ranked only once, we show that the joint ordering-and-ranking problem can be reformulated into an easier assignment problem built on a sequence of newsvendor solutions, and thereby there exists a polynomial-time algorithm that generates an optimal ordering-and-ranking policy. We then consider a problem where product rankings can be updated over time, the above algorithm that uses static ranking is indeed asymptotically optimal. We also provide an algorithm with ranking updates, which performs better than the static ranking algorithm in both asymptotic and non-asymptotic settings. We next extend to the problem where a retailer utilizes pre-season sales (or pre-orders) to learn about future demand. Building on our analytic results, we propose a two-phase online learning algorithm with a theoretical performance guarantee. Using computational experiments, we show that our proposed algorithms significantly outperform benchmarks including the current split decision-making practices, can be scaled up to make ranking and ordering decisions with a large number of products, and generate high-quality solutions even when the underlying customer choice model is misspecified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caca完成签到,获得积分10
57秒前
bkagyin应助完美芹采纳,获得10
1分钟前
高高的天亦完成签到 ,获得积分10
1分钟前
1分钟前
ding应助契合采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
Ava应助张立人采纳,获得10
2分钟前
2分钟前
契合发布了新的文献求助10
2分钟前
2分钟前
张立人发布了新的文献求助10
2分钟前
iii完成签到 ,获得积分10
2分钟前
上官若男应助张立人采纳,获得10
3分钟前
3分钟前
张立人发布了新的文献求助10
3分钟前
3分钟前
momi完成签到 ,获得积分10
3分钟前
忧虑的代容完成签到 ,获得积分10
3分钟前
完美芹完成签到,获得积分10
3分钟前
Georgechan完成签到,获得积分10
3分钟前
完美芹发布了新的文献求助10
3分钟前
孙明丽完成签到,获得积分10
3分钟前
孙明丽发布了新的文献求助20
3分钟前
3分钟前
雪白元风完成签到 ,获得积分10
4分钟前
乌龟娟应助完美芹采纳,获得10
4分钟前
牛八先生完成签到,获得积分10
4分钟前
充电宝应助oshunne采纳,获得10
5分钟前
SciGPT应助酷炫薯片采纳,获得10
5分钟前
5分钟前
5分钟前
oshunne发布了新的文献求助10
5分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346841
求助须知:如何正确求助?哪些是违规求助? 2973392
关于积分的说明 8659208
捐赠科研通 2653886
什么是DOI,文献DOI怎么找? 1453360
科研通“疑难数据库(出版商)”最低求助积分说明 672885
邀请新用户注册赠送积分活动 662830