Ordering and Ranking Products for an Online Retailer

排名(信息检索) 业务 计量经济学 计算机科学 数学 情报检索
作者
Zijin Zhang,Hyun‐Soo Ahn,Lennart Baardman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4061071
摘要

In e-commerce, product ranking and display affect customer choices and sales as items placed in top positions receive significantly more clicks than items placed at the bottom. For retailers who sell items from the inventory they have purchased and owned, product ranking has a profound impact on future demand as well as the amount of inventory to be ordered before the selling season starts. However, in many cases, inventory ordering and product ranking decisions are made separately at different times by different functional departments with little or no coordination. One of the main challenges is that the complexity of product ranking problem grows exponentially as the number of products on display increases. In this paper, we show that it is important to consider inventory ordering and product ranking decisions as a joint problem, and study how this can be done. In a problem where products are ordered and ranked only once, we show that the joint ordering-and-ranking problem can be reformulated into an easier assignment problem built on a sequence of newsvendor solutions, and thereby there exists a polynomial-time algorithm that generates an optimal ordering-and-ranking policy. We then consider a problem where product rankings can be updated over time, the above algorithm that uses static ranking is indeed asymptotically optimal. We also provide an algorithm with ranking updates, which performs better than the static ranking algorithm in both asymptotic and non-asymptotic settings. We next extend to the problem where a retailer utilizes pre-season sales (or pre-orders) to learn about future demand. Building on our analytic results, we propose a two-phase online learning algorithm with a theoretical performance guarantee. Using computational experiments, we show that our proposed algorithms significantly outperform benchmarks including the current split decision-making practices, can be scaled up to make ranking and ordering decisions with a large number of products, and generate high-quality solutions even when the underlying customer choice model is misspecified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyw完成签到 ,获得积分10
1秒前
一只学术小白完成签到,获得积分10
3秒前
烟花应助茸茸茸采纳,获得30
4秒前
Owen应助zwy109采纳,获得10
6秒前
6秒前
明朗完成签到 ,获得积分10
6秒前
李健应助达布妞采纳,获得10
9秒前
高高完成签到,获得积分10
9秒前
吴兰田完成签到,获得积分10
10秒前
12秒前
13秒前
15秒前
完美世界应助肖肖采纳,获得10
16秒前
DE2022发布了新的文献求助10
16秒前
17秒前
20秒前
20秒前
sea完成签到 ,获得积分10
21秒前
zwy109发布了新的文献求助10
24秒前
DE2022完成签到,获得积分10
25秒前
m7m发布了新的文献求助10
25秒前
25秒前
小湛完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
lyp完成签到,获得积分10
27秒前
30秒前
Master完成签到,获得积分10
31秒前
麦克阿宇发布了新的文献求助10
32秒前
33秒前
34秒前
soapffz完成签到,获得积分10
36秒前
JamesPei应助mj采纳,获得10
37秒前
Dmooou发布了新的文献求助10
39秒前
TT发布了新的文献求助10
42秒前
善良断缘完成签到 ,获得积分10
43秒前
机灵的觅山完成签到,获得积分20
43秒前
研友_VZG7GZ应助sda采纳,获得10
44秒前
Hello应助王星星采纳,获得10
44秒前
Liufgui应助麦克阿宇采纳,获得10
47秒前
Ava应助科研通管家采纳,获得10
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068