Asymmetric mechanical properties in ferroelectrics driven by flexo-deformation effect

挠曲电 材料科学 扭转(腹足类) 铁电性 收缩率 抗弯刚度 复合材料 压电 刚度 凝聚态物理 电介质 物理 光电子学 医学 外科
作者
Yingzhuo Lun,Jiawang Hong,Daining Fang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:164: 104891-104891 被引量:14
标识
DOI:10.1016/j.jmps.2022.104891
摘要

The inversion symmetry breaking induced by the strain gradient drives asymmetric mechanical properties in ferroelectrics, which have been evidenced in the asymmetric contact stiffness and asymmetric crack propagation in nanoindentation, as well as asymmetric bending expansion/shrinkage behavior in freestanding ferroelectric oxides. These polarity-dependent asymmetric mechanical properties are closely related to the flexoelectricity, however, the universal mechanism for revealing their common origin is still unclear. In this work, we establish an electromechanical model based on the fundamental flexoelectric framework, and numerically reproduce the asymmetric bending expansion/shrinkage behavior observed experimentally in freestanding ferroelectric oxides. The analysis further reveals that the bending expansion/shrinkage effect is the consequence of the coupling interaction of the flexoelectric electrical field (generated by the strain gradient) and the inverse piezoelectric effect, which contributes to the significant asymmetric bending rigidity. The mechanism underlying the asymmetric bending responses driven by the flexoelectricity is further extended as the flexo-deformation effect, which is revealed to be universal for qualitatively explaining the origin of the asymmetric contact stiffness and the asymmetric crack propagation in ferroelectrics. An unprecedented asymmetric torsion expansion/shrinkage behavior and asymmetric torsional rigidity are also predicted based on the flexo-deformation effect. These findings shed light on the studies about the asymmetric mechanical properties in ferroelectrics, and provide a new approach to design novel devices with asymmetric mechanical functionalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
小白鼠完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
科研通AI6应助Fortune采纳,获得10
2秒前
DrLee发布了新的文献求助10
3秒前
搞怪半烟完成签到,获得积分10
3秒前
害怕的惜文完成签到,获得积分10
3秒前
wlnhyF完成签到,获得积分10
3秒前
4秒前
mhpvv完成签到,获得积分10
4秒前
4秒前
东新发布了新的文献求助10
4秒前
王帅发布了新的文献求助10
4秒前
SciGPT应助YZQ采纳,获得10
5秒前
5秒前
6秒前
HOla完成签到,获得积分10
6秒前
小马甲应助邓茗予采纳,获得10
7秒前
科研通AI6应助月星采纳,获得10
7秒前
张瑜发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
张晓祁发布了新的文献求助100
10秒前
调皮的灰狼完成签到,获得积分10
11秒前
11秒前
12秒前
液氧发布了新的文献求助10
12秒前
NANA完成签到,获得积分10
13秒前
小青椒应助happy采纳,获得50
13秒前
13秒前
加贺完成签到,获得积分10
14秒前
禹宛白发布了新的文献求助10
14秒前
贪玩的秋柔应助yaochenglun采纳,获得10
15秒前
英俊的铭应助震动的雪一采纳,获得10
15秒前
鳗鱼鸽子完成签到,获得积分10
15秒前
甜筒发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802