亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic modeling for product family evolution combined with artificial neural network based forecasting model: A study of iPhone evolution

计算机科学 新产品开发 人工神经网络 产品设计 产品(数学) 可靠性(半导体) 模糊逻辑 过程(计算) 工业工程 需求预测 运筹学 数据挖掘
作者
Sumana Biswas,Ismail Ali,Ripon K. Chakrabortty,Hasan Hüseyin Turan,Sondoss Elsawah,Michael J. Ryan
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:178: 121549-121549
标识
DOI:10.1016/j.techfore.2022.121549
摘要

• The proposed model combines the evolution model with the forecasting model. • It considers market demand, customer needs and technological requirements together. • The ANN model can forecast the specification of some features of future product. • The proposed model is applicable in the engineering design of product development. Products continuously evolve over time. Realizing the pattern of product family evolution along with proper estimation of features for future products has been regarded as a critical issue for business success. Focusing on this issue, a dynamic model for product family evolution combined with forecasting is proposed in this research work. The proposed model considers the influence of market demand, customer needs and technological requirements that are time-dependent. The methodology is a four-phase model. In this model the evaluations of product family evolution are based on the Grey Relational Analysis and Fuzzy Analytical Hierarchy Process. Sensitivity is performed to investigate the reliability of the model. In addition, a data-driven neural network-based forecasting model is proposed that can forecast the specification of the most influential features of future product with a reasonable accuracy. This forecasting model utilizes the information of the previous generation’s product. For each phase, the effectiveness of the developed approach is demonstrated with numerical simulation results and validated with a case study of Apple’s iPhone product family. The case study shows that the approach is very effective to identify the most influential key design features and best performed products that will influence the evolution design of future product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
55555发布了新的文献求助30
7秒前
31秒前
眼中浓缩发布了新的文献求助10
36秒前
48秒前
研友_VZG7GZ应助Chloe采纳,获得10
1分钟前
无名花生完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Chloe发布了新的文献求助10
1分钟前
淡淡忆之发布了新的文献求助10
1分钟前
Krim完成签到 ,获得积分10
1分钟前
1分钟前
淡淡忆之完成签到,获得积分10
1分钟前
隐形曼青应助Chloe采纳,获得10
1分钟前
2分钟前
jamwu发布了新的文献求助10
2分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
Green完成签到,获得积分10
2分钟前
2分钟前
GreenT完成签到,获得积分10
2分钟前
Jasper应助Chloe采纳,获得10
3分钟前
zhangfuchao完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Chloe发布了新的文献求助10
3分钟前
嘻嘻哈哈完成签到,获得积分10
3分钟前
从容芮完成签到,获得积分0
3分钟前
白华苍松发布了新的文献求助10
3分钟前
情怀应助Chloe采纳,获得10
3分钟前
孤蚀月完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
Chloe发布了新的文献求助10
4分钟前
LILYpig完成签到 ,获得积分10
4分钟前
4分钟前
无花果应助Chloe采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 800
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353489
求助须知:如何正确求助?哪些是违规求助? 2978125
关于积分的说明 8683751
捐赠科研通 2659467
什么是DOI,文献DOI怎么找? 1456257
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665020