Dynamic modeling for product family evolution combined with artificial neural network based forecasting model: A study of iPhone evolution

计算机科学 新产品开发 人工神经网络 产品设计 产品(数学) 可靠性(半导体) 模糊逻辑 过程(计算) 工业工程 需求预测 运筹学 数据挖掘
作者
Sumana Biswas,Ismail Ali,Ripon K. Chakrabortty,Hasan Hüseyin Turan,Sondoss Elsawah,Michael J. Ryan
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:178: 121549-121549
标识
DOI:10.1016/j.techfore.2022.121549
摘要

• The proposed model combines the evolution model with the forecasting model. • It considers market demand, customer needs and technological requirements together. • The ANN model can forecast the specification of some features of future product. • The proposed model is applicable in the engineering design of product development. Products continuously evolve over time. Realizing the pattern of product family evolution along with proper estimation of features for future products has been regarded as a critical issue for business success. Focusing on this issue, a dynamic model for product family evolution combined with forecasting is proposed in this research work. The proposed model considers the influence of market demand, customer needs and technological requirements that are time-dependent. The methodology is a four-phase model. In this model the evaluations of product family evolution are based on the Grey Relational Analysis and Fuzzy Analytical Hierarchy Process. Sensitivity is performed to investigate the reliability of the model. In addition, a data-driven neural network-based forecasting model is proposed that can forecast the specification of the most influential features of future product with a reasonable accuracy. This forecasting model utilizes the information of the previous generation’s product. For each phase, the effectiveness of the developed approach is demonstrated with numerical simulation results and validated with a case study of Apple’s iPhone product family. The case study shows that the approach is very effective to identify the most influential key design features and best performed products that will influence the evolution design of future product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
weiwei完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
niyaoganshenme完成签到,获得积分20
7秒前
柏忆南完成签到 ,获得积分10
8秒前
111完成签到 ,获得积分10
12秒前
hxpxp完成签到,获得积分10
13秒前
13秒前
愉快的犀牛完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Ao_Jiang完成签到,获得积分10
17秒前
18秒前
大知闲闲完成签到 ,获得积分10
25秒前
开心的云完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助30
27秒前
打打应助我有一只猫采纳,获得10
27秒前
周常通完成签到,获得积分10
28秒前
朔方姑娘吧完成签到 ,获得积分10
35秒前
36秒前
天道酬勤完成签到,获得积分10
37秒前
38秒前
leena完成签到 ,获得积分10
43秒前
煲煲煲仔饭完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
46秒前
zhang完成签到 ,获得积分10
46秒前
onevip完成签到,获得积分0
46秒前
dolabmu完成签到 ,获得积分10
47秒前
laber应助科研通管家采纳,获得50
50秒前
laber应助科研通管家采纳,获得50
50秒前
风清扬应助科研通管家采纳,获得150
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
和平使命应助科研通管家采纳,获得10
50秒前
laber应助科研通管家采纳,获得50
50秒前
Akim应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
康谨完成签到 ,获得积分10
51秒前
Kiki完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093056
求助须知:如何正确求助?哪些是违规求助? 4306804
关于积分的说明 13417225
捐赠科研通 4132917
什么是DOI,文献DOI怎么找? 2264214
邀请新用户注册赠送积分活动 1267918
关于科研通互助平台的介绍 1203651