AdaFed: Optimizing Participation-Aware Federated Learning With Adaptive Aggregation Weights

计算机科学 趋同(经济学) 集合(抽象数据类型) 联合学习 跟踪(心理语言学) 主流 人工智能 算法 理论计算机科学 法学 政治学 语言学 经济增长 哲学 经济 程序设计语言
作者
Lei Tan,Xiaoxi Zhang,Yipeng Zhou,Xinkai Che,Miao Hu,Xu Chen,Di Wu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 2708-2720 被引量:12
标识
DOI:10.1109/tnse.2022.3168969
摘要

Federated learning (FL) has become one of the mainstream paradigms for multi-party collaborative learning with privacy protection. As it is difficult to guarantee all FL devices to be active simultaneously, a common approach is to only use a partial set of devices to participate in each round of model training. However, such partial device participation may introduce significant bias on the trained model. In this paper, we first conduct a theoretical analysis to investigate the negative impact of biased device participation and derive the convergence rate of FedAvg, the most well-known FL algorithm, under biased device participation. We further propose an optimized participation-aware federated learning algorithm called AdaFed , which can adaptively tune the aggregation weight of each device based on its historical participation records and remove the bias introduced by partial device participation. To be more rigorous, we formally prove the convergence guarantee of AdaFed. Finally, we conduct trace-driven experiments to validate the effectiveness of our proposed algorithm. The experimental results are consistent with our theoretical analysis and show that AdaFed improves the global model accuracy and converges much faster than the state-of-the-art FL algorithms by eliminating the negative effect of biased device participation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助齐婷婷采纳,获得10
1秒前
1秒前
orixero应助初次见面采纳,获得10
1秒前
Orange应助YS采纳,获得10
3秒前
CodeCraft应助干红采纳,获得10
3秒前
3秒前
xuan发布了新的文献求助30
4秒前
4秒前
熊世凯发布了新的文献求助10
4秒前
4秒前
虚心香彤发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
无言完成签到,获得积分10
8秒前
万能图书馆应助韩孟霏采纳,获得10
8秒前
普鲁卡因发布了新的文献求助30
8秒前
小杭76应助zhou采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
FashionBoy应助全球少女的梦采纳,获得10
11秒前
水牛完成签到,获得积分10
11秒前
zhaoxin发布了新的文献求助10
12秒前
任全强发布了新的文献求助10
12秒前
13秒前
14秒前
研友_VZG7GZ应助王泽采纳,获得10
14秒前
14秒前
大胆的雨完成签到,获得积分20
14秒前
完美世界应助余姚采纳,获得10
15秒前
初次见面发布了新的文献求助10
15秒前
靈二完成签到 ,获得积分10
15秒前
畅快代柔完成签到,获得积分10
15秒前
16秒前
xx_sci完成签到,获得积分10
17秒前
zoey完成签到,获得积分10
17秒前
Ava应助幸运的尔芙采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406315
求助须知:如何正确求助?哪些是违规求助? 4524393
关于积分的说明 14097868
捐赠科研通 4438136
什么是DOI,文献DOI怎么找? 2436010
邀请新用户注册赠送积分活动 1428144
关于科研通互助平台的介绍 1406292