AdaFed: Optimizing Participation-Aware Federated Learning With Adaptive Aggregation Weights

计算机科学 趋同(经济学) 集合(抽象数据类型) 联合学习 跟踪(心理语言学) 主流 人工智能 算法 理论计算机科学 法学 政治学 语言学 经济增长 哲学 经济 程序设计语言
作者
Lei Tan,Xiaoxi Zhang,Yipeng Zhou,Xinkai Che,Miao Hu,Xu Chen,Di Wu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 2708-2720 被引量:12
标识
DOI:10.1109/tnse.2022.3168969
摘要

Federated learning (FL) has become one of the mainstream paradigms for multi-party collaborative learning with privacy protection. As it is difficult to guarantee all FL devices to be active simultaneously, a common approach is to only use a partial set of devices to participate in each round of model training. However, such partial device participation may introduce significant bias on the trained model. In this paper, we first conduct a theoretical analysis to investigate the negative impact of biased device participation and derive the convergence rate of FedAvg, the most well-known FL algorithm, under biased device participation. We further propose an optimized participation-aware federated learning algorithm called AdaFed , which can adaptively tune the aggregation weight of each device based on its historical participation records and remove the bias introduced by partial device participation. To be more rigorous, we formally prove the convergence guarantee of AdaFed. Finally, we conduct trace-driven experiments to validate the effectiveness of our proposed algorithm. The experimental results are consistent with our theoretical analysis and show that AdaFed improves the global model accuracy and converges much faster than the state-of-the-art FL algorithms by eliminating the negative effect of biased device participation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大模型应助热带鱼采纳,获得10
1秒前
孙晢皙完成签到,获得积分10
1秒前
1秒前
小马甲应助CL采纳,获得10
1秒前
1秒前
Stella应助念念蜜桃乌龙采纳,获得10
1秒前
2秒前
星辰大海应助kytkk采纳,获得10
2秒前
long完成签到,获得积分10
3秒前
3秒前
高高的从波完成签到,获得积分10
3秒前
singsong完成签到,获得积分10
3秒前
无极微光应助优美芝采纳,获得20
3秒前
博ge发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
ht完成签到,获得积分10
5秒前
领导范儿应助kyros采纳,获得10
5秒前
qin完成签到,获得积分10
6秒前
roha_17完成签到,获得积分10
6秒前
6秒前
lwg完成签到,获得积分10
7秒前
XIXIXI发布了新的文献求助10
7秒前
7秒前
爆米花应助Diss采纳,获得10
7秒前
8秒前
10秒前
10秒前
2305814008完成签到,获得积分20
11秒前
11秒前
13秒前
浮游应助scfsl采纳,获得10
13秒前
13秒前
13秒前
一只小学弱完成签到,获得积分10
14秒前
14秒前
苏羽关注了科研通微信公众号
14秒前
14秒前
PONY发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718