融合
脂质体
化学
多路复用
DNA
组合综合
纳米技术
计算生物学
粒子(生态学)
生物物理学
组合化学
生物系统
生物化学
生物信息学
材料科学
生物
哲学
语言学
生态学
作者
Mette Galsgaard Malle,Philipp M. G. Löffler,Søren S.-R. Bohr,Magnus Berg Sletfjerding,Nikolaj Alexander Risgaard,Simon Bo Jensen,Min Zhang,Per Hedegård,Stefan Vogel,Nikos S. Hatzakis
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2022-04-04
卷期号:14 (5): 558-565
被引量:38
标识
DOI:10.1038/s41557-022-00912-5
摘要
Combinatorial high-throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large-scale analyses and thus limited by a long running time and excessive materials cost. We here present a single-particle combinatorial multiplexed liposome fusion mediated by DNA for parallelized multistep and non-deterministic fusion of individual subattolitre nanocontainers. We observed directly the efficient (>93%) and leakage free stochastic fusion sequences for arrays of surface-tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated single-stranded DNA and fluorescently barcoded by a distinct ratio of chromophores. The stochastic fusion resulted in a distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time total internal reflection imaging allowed the direct observation of >16,000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface-tethered target nanocontainers (~42,000 containers per mm2) offers entire combinatorial multiplex screens using only picograms of material.
科研通智能强力驱动
Strongly Powered by AbleSci AI