太赫兹辐射
拓扑(电路)
石墨烯
物理
奇点
引力奇点
光电子学
拓扑绝缘体
栅极电压
电压
凝聚态物理
量子力学
晶体管
电气工程
几何学
工程类
数学
作者
M. Said Ergoktas,Sina Soleymani,Nurbek Kakenov,Kaiyuan Wang,Thomas B. Smith,Gökhan Bakan,Sinan Balci,Alessandro Principi,Kostya S. Novoselov,Şahin Kaya Özdemir,Coşkun Kocabaş
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2022-04-07
卷期号:376 (6589): 184-188
被引量:50
标识
DOI:10.1126/science.abn6528
摘要
The topological structure associated with the branchpoint singularity around an exceptional point (EP) provides new tools for controlling the propagation of electromagnetic waves and their interaction with matter. To date, observation of EPs in light-matter interactions has remained elusive and has hampered further progress in applications of EP physics. Here, we demonstrate the emergence of EPs in the electrically controlled interaction of light with a collection of organic molecules in the terahertz regime at room temperature. We show, using time-domain terahertz spectroscopy, that the intensity and phase of terahertz pulses can be controlled by a gate voltage which drives the device across the EP. This fully electrically-tuneable system allows reconstructing the Riemann surface associated with the complex energy landscape and provides a topological control of light by tuning the loss-imbalance and frequency detuning of interacting modes. We anticipate that our work could pave the way for new means of dynamic control on the intensity and phase of terahertz field, developing topological optoelectronics, and studying the manifestations of EP physics in the quantum correlations of the light emitted by a collection of emitters coupled to resonators.
科研通智能强力驱动
Strongly Powered by AbleSci AI