3-D CNN-Based Multichannel Contrastive Learning for Alzheimer’s Disease Automatic Diagnosis

人工智能 计算机科学 模式识别(心理学) 语音识别 自然语言处理
作者
Jiaguang Li,Ying Wei,Chuyuan Wang,Qian Hu,Yue Liu,Long Xu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:16
标识
DOI:10.1109/tim.2022.3162265
摘要

Alzheimer's disease (AD) is a common progressive neurodegenerative disease in the elderly. Mild cognitive impairment (MCI) is the symptomatic predementia stage of AD. Accurately distinguishing AD and MCI patients from normal people is the first step of the disease diagnosis. Several studies have demonstrated the potential of deep learning in the automatic diagnosis of AD and MCI using T1-weighted magnetic resonance imaging (MRI) images. In this article, we proposed an automatic classification method of AD versus normal control (NC) and MCI versus NC based on MRI images. This method used the 3-D convolutional neural network and took the whole 3-D MRI image as the input, which can obtain image information to the greatest extent. In addition, the multichannel contrastive learning strategy based on multiple data transformation methods (e.g., add noise) can combine the supervised classification loss with the unsupervised contrastive loss, which can further improve the classification accuracy and generalization ability of the network. To verify the effectiveness of our method, a large number of experiments were implemented on the ADNI dataset. The results show that our method can achieve excellent performance in accurate diagnosis of AD and MCI; the multichannel contrastive learning strategy can greatly improve the classification accuracy (AD versus NC: 4.19%; MCI versus NC: 4.57%) and generalization ability of the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助优秀的枕头采纳,获得10
3秒前
double_x发布了新的文献求助10
7秒前
7秒前
11完成签到 ,获得积分10
7秒前
8秒前
9秒前
SciGPT应助hui采纳,获得10
11秒前
Jasper应助haha采纳,获得10
13秒前
14秒前
共享精神应助萤火采纳,获得10
16秒前
Sophia完成签到,获得积分10
19秒前
19秒前
qiuqiu发布了新的文献求助10
20秒前
轻松的冷雪完成签到,获得积分10
23秒前
24秒前
24秒前
27秒前
27秒前
彭于晏应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
SYLH应助科研通管家采纳,获得30
29秒前
迷途的羔羊完成签到 ,获得积分10
29秒前
29秒前
我是老大应助科研通管家采纳,获得10
30秒前
李健应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
奥特超曼应助科研通管家采纳,获得10
30秒前
30秒前
萤火发布了新的文献求助10
31秒前
31秒前
33秒前
CipherSage应助qiuqiu采纳,获得10
35秒前
丘山发布了新的文献求助10
35秒前
余姓懒发布了新的文献求助10
36秒前
朝朝完成签到,获得积分10
36秒前
悦耳的灵完成签到 ,获得积分10
38秒前
double_x完成签到,获得积分10
39秒前
42秒前
Allen完成签到,获得积分10
43秒前
所所应助优秀的枕头采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993533
求助须知:如何正确求助?哪些是违规求助? 3534281
关于积分的说明 11265112
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809710