Ensemble Convolutional Neural Networks With Support Vector Machine for Epilepsy Classification Based on Multi-Sequence of Magnetic Resonance Images

支持向量机 癫痫 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 磁共振成像 序列(生物学) 人工神经网络 多数决原则 上下文图像分类 机器学习 图像(数学) 神经科学 医学 放射科 心理学 遗传学 生物
作者
Irwan Budi Santoso,Yudhi Adrianto,Anggraini Dwi Sensusiati,Diah Puspito Wulandari,I Ketut Eddy Purnama
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 32034-32048 被引量:6
标识
DOI:10.1109/access.2022.3159923
摘要

Classification of brain abnormalities as a pathological cue of epilepsy based on magnetic resonance (MR) images is essential for diagnosis. There are some types of brain structural abnormalities as a pathological cue of epilepsy. To identify it, a neurologist can involve some sequence of MR images at a time. Existing algorithms for abnormalities classification usually involve only one or two sequences of MR images. In this paper, we proposed ensemble convolutional neural networks with a support vector machine (SVM) scheme to classify brain abnormalities (epilepsy) vs. non-epilepsy based on the axial multi-sequence of MR images. The convolutional neural network (CNN) models on the proposed method are base-learner models with different architectures and have low parameters. The performance improvement on the proposed method is made by combining the output of the base-learner models and the combination of predictions from these models. The combination of predictions uses majority voting, weighted majority voting, and weighted average. Henceforth, the combined output becomes input in the meta-learning process with SVM for the final classification. The dataset for evaluation is the axial multi-sequences of MR images that include abnormal brain structures causing epilepsy and non-epilepsy with various subjects' histories. The experimental results show the proposed method can obtain an accuracy average and F 1 -score of 86.37% and 90.75%, respectively, and an improvement of accuracy of 6.7%-18.19% against the CNN models on the base-learner and 2.54%-2.65% against the combination of predictions. With these results, the proposed architecture also provides better performance compared to the two existing CNN architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张好好发布了新的文献求助10
1秒前
2秒前
2秒前
小圆真圆发布了新的文献求助10
3秒前
冰雪发布了新的文献求助10
3秒前
ding应助echo采纳,获得10
4秒前
5秒前
yar应助张好好采纳,获得10
6秒前
FashionBoy应助曾开心采纳,获得10
7秒前
三十完成签到 ,获得积分10
7秒前
sanwan发布了新的文献求助10
8秒前
8秒前
9秒前
虚幻的凤完成签到,获得积分10
9秒前
11秒前
典雅的万宝路完成签到 ,获得积分10
12秒前
飞羽发布了新的文献求助10
13秒前
三人行发布了新的文献求助10
14秒前
健身的吮指原味鸡完成签到,获得积分10
14秒前
可可完成签到 ,获得积分10
14秒前
泥鳅应助小马哥采纳,获得10
15秒前
echo完成签到,获得积分20
16秒前
天天快乐应助lingling采纳,获得10
16秒前
游戏人间发布了新的文献求助10
16秒前
violet完成签到,获得积分20
17秒前
19秒前
19秒前
qyd发布了新的文献求助100
19秒前
19秒前
李健的小迷弟应助violet采纳,获得10
21秒前
灿华完成签到 ,获得积分10
21秒前
asd发布了新的文献求助10
22秒前
冷艳短靴发布了新的文献求助10
23秒前
美好远望发布了新的文献求助10
25秒前
yar给lqh0211的求助进行了留言
25秒前
聪慧海蓝完成签到 ,获得积分10
25秒前
26秒前
岂曰无衣完成签到 ,获得积分10
28秒前
斯文123完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466496
求助须知:如何正确求助?哪些是违规求助? 3059287
关于积分的说明 9065817
捐赠科研通 2749768
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696804