Intelligent Edge-Enabled Efficient Multi-Source Data Fusion for Autonomous Surface Vehicles in Maritime Internet of Things

计算机科学 传感器融合 GSM演进的增强数据速率 实时计算 物联网 鉴定(生物学) 人工智能 计算机视觉 嵌入式系统 植物 生物
作者
Ryan Wen Liu,Yu Guo,Jiangtian Nie,Qin Hu,Zehui Xiong,Yonghao Han,Mohsen Guizani
出处
期刊:IEEE transactions on green communications and networking [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 1574-1587 被引量:33
标识
DOI:10.1109/tgcn.2022.3158004
摘要

With the rapid development of low-end Internet of Things (IoT) devices and shipborne sensors, efficient multi-source data fusion methods for autonomous surface vehicles (ASVs) have recently attracted significant research interest in intelligent edge-enabled maritime applications. The data fusion capacity can enhance the situation awareness of ASVs, leading to improved efficacy and safety in ASV-empowered maritime IoT (MIoT). Both cameras and automatic identification system (AIS) equipment, which provide visual and positioning information, respectively, have become the commonly adopted cost-effective sensors. In this work, we first introduce a lightweight YOLOX-s network with transfer learning to accurately and robustly detect the moving vessels at different scales in real time. A data augmentation method is then proposed to promote its generalization ability. The detected vessels and synchronous AIS messages are finally fused to make full use of the multi-source sensing data, contributing to an augmented reality (AR)-based maritime navigation system at the shipborne intelligent edges. The AR system is able to superimpose both static and dynamic information from the collected AIS messages onto the video-captured images. It has the capacity of providing auxiliary information for early warning of navigation risks for ASVs in MIoT networks. Compared with traditional single-sensor-based navigation methods, our data fusion framework exhibits more reliable and robust results, and appears to have substantial practical potential applications. Extensive experiments have been conducted to demonstrate the superior performance of our framework under different navigational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
超级的飞飞完成签到,获得积分10
1秒前
可靠画笔完成签到,获得积分20
1秒前
stan完成签到,获得积分10
2秒前
Wk应助搬砖人采纳,获得10
2秒前
尊敬的夏槐完成签到,获得积分10
4秒前
研友_VZGVzn发布了新的文献求助30
5秒前
5秒前
nini关注了科研通微信公众号
5秒前
5秒前
5秒前
搜集达人应助阿腾采纳,获得10
6秒前
rrmj完成签到,获得积分10
6秒前
汉堡包应助欢呼的牛排采纳,获得10
7秒前
RebeccaHe举报Apricity求助涉嫌违规
7秒前
所所应助李键刚采纳,获得10
7秒前
Insomthea完成签到 ,获得积分10
9秒前
9秒前
卡戎529完成签到 ,获得积分10
10秒前
yi发布了新的文献求助30
10秒前
鲁西西发布了新的文献求助10
11秒前
陈晚拧完成签到 ,获得积分10
12秒前
月月发布了新的文献求助10
13秒前
祭礼之龙完成签到,获得积分10
13秒前
demoliu完成签到,获得积分20
13秒前
wan完成签到,获得积分10
13秒前
LLL完成签到,获得积分10
14秒前
宇文天思完成签到,获得积分10
14秒前
Harish发布了新的文献求助10
14秒前
xingzai101完成签到,获得积分10
14秒前
8R60d8应助山山而川采纳,获得10
14秒前
雅樱完成签到,获得积分10
15秒前
强健的电源完成签到,获得积分20
15秒前
充电宝应助cccchen采纳,获得10
15秒前
奋斗枫应助满意的友桃采纳,获得20
16秒前
优秀的小豆芽完成签到,获得积分10
16秒前
17秒前
qks完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830975
关于积分的说明 7982319
捐赠科研通 2492731
什么是DOI,文献DOI怎么找? 1329813
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954