Intelligent Edge-Enabled Efficient Multi-Source Data Fusion for Autonomous Surface Vehicles in Maritime Internet of Things

计算机科学 传感器融合 GSM演进的增强数据速率 实时计算 物联网 鉴定(生物学) 人工智能 计算机视觉 嵌入式系统 植物 生物
作者
Ryan Wen Liu,Yu Guo,Jiangtian Nie,Qin Hu,Zehui Xiong,Yonghao Han,Mohsen Guizani
出处
期刊:IEEE transactions on green communications and networking [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 1574-1587 被引量:33
标识
DOI:10.1109/tgcn.2022.3158004
摘要

With the rapid development of low-end Internet of Things (IoT) devices and shipborne sensors, efficient multi-source data fusion methods for autonomous surface vehicles (ASVs) have recently attracted significant research interest in intelligent edge-enabled maritime applications. The data fusion capacity can enhance the situation awareness of ASVs, leading to improved efficacy and safety in ASV-empowered maritime IoT (MIoT). Both cameras and automatic identification system (AIS) equipment, which provide visual and positioning information, respectively, have become the commonly adopted cost-effective sensors. In this work, we first introduce a lightweight YOLOX-s network with transfer learning to accurately and robustly detect the moving vessels at different scales in real time. A data augmentation method is then proposed to promote its generalization ability. The detected vessels and synchronous AIS messages are finally fused to make full use of the multi-source sensing data, contributing to an augmented reality (AR)-based maritime navigation system at the shipborne intelligent edges. The AR system is able to superimpose both static and dynamic information from the collected AIS messages onto the video-captured images. It has the capacity of providing auxiliary information for early warning of navigation risks for ASVs in MIoT networks. Compared with traditional single-sensor-based navigation methods, our data fusion framework exhibits more reliable and robust results, and appears to have substantial practical potential applications. Extensive experiments have been conducted to demonstrate the superior performance of our framework under different navigational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
饭小心发布了新的文献求助10
1秒前
tanjianxin完成签到,获得积分10
1秒前
wanci应助帅玉玉采纳,获得10
1秒前
Ellie完成签到 ,获得积分10
1秒前
晴天完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
EOFG0PW发布了新的文献求助10
3秒前
buno应助yug采纳,获得10
3秒前
hgh完成签到,获得积分10
3秒前
001关闭了001文献求助
4秒前
研友_VZG7GZ应助Fareth采纳,获得10
4秒前
5秒前
韭菜盒子发布了新的文献求助10
5秒前
5秒前
大意的安白完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
学术蟑螂完成签到,获得积分10
6秒前
6秒前
6秒前
兴奋冷松完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
饭小心完成签到,获得积分20
7秒前
luodd完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
9秒前
小吴发布了新的文献求助10
9秒前
甜甜灵槐发布了新的文献求助10
10秒前
yyang发布了新的文献求助10
10秒前
10秒前
超级水壶发布了新的文献求助10
10秒前
manan发布了新的文献求助10
10秒前
10秒前
fxy完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740