Intelligent Edge-Enabled Efficient Multi-Source Data Fusion for Autonomous Surface Vehicles in Maritime Internet of Things

计算机科学 传感器融合 GSM演进的增强数据速率 实时计算 物联网 鉴定(生物学) 人工智能 计算机视觉 嵌入式系统 植物 生物
作者
Ryan Wen Liu,Yu Guo,Jiangtian Nie,Qin Hu,Zehui Xiong,Yonghao Han,Mohsen Guizani
出处
期刊:IEEE transactions on green communications and networking [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 1574-1587 被引量:33
标识
DOI:10.1109/tgcn.2022.3158004
摘要

With the rapid development of low-end Internet of Things (IoT) devices and shipborne sensors, efficient multi-source data fusion methods for autonomous surface vehicles (ASVs) have recently attracted significant research interest in intelligent edge-enabled maritime applications. The data fusion capacity can enhance the situation awareness of ASVs, leading to improved efficacy and safety in ASV-empowered maritime IoT (MIoT). Both cameras and automatic identification system (AIS) equipment, which provide visual and positioning information, respectively, have become the commonly adopted cost-effective sensors. In this work, we first introduce a lightweight YOLOX-s network with transfer learning to accurately and robustly detect the moving vessels at different scales in real time. A data augmentation method is then proposed to promote its generalization ability. The detected vessels and synchronous AIS messages are finally fused to make full use of the multi-source sensing data, contributing to an augmented reality (AR)-based maritime navigation system at the shipborne intelligent edges. The AR system is able to superimpose both static and dynamic information from the collected AIS messages onto the video-captured images. It has the capacity of providing auxiliary information for early warning of navigation risks for ASVs in MIoT networks. Compared with traditional single-sensor-based navigation methods, our data fusion framework exhibits more reliable and robust results, and appears to have substantial practical potential applications. Extensive experiments have been conducted to demonstrate the superior performance of our framework under different navigational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼噜完成签到,获得积分10
刚刚
bkagyin应助labxgr采纳,获得10
1秒前
虚心的芹发布了新的文献求助10
1秒前
aqua_xin完成签到,获得积分0
1秒前
科目三应助shone采纳,获得10
1秒前
豪子完成签到 ,获得积分10
1秒前
link完成签到,获得积分20
2秒前
火火完成签到,获得积分10
2秒前
狗狗发布了新的文献求助10
3秒前
猪猪hero发布了新的文献求助10
3秒前
深情安青应助淡然老头采纳,获得10
3秒前
可爱的函函应助WXG采纳,获得10
5秒前
5秒前
西红柿没错完成签到,获得积分10
5秒前
Mollyshimmer完成签到 ,获得积分10
5秒前
5秒前
KYT_XX发布了新的文献求助10
5秒前
6秒前
慕青应助可爱的菠萝采纳,获得10
6秒前
狗狗完成签到,获得积分10
7秒前
Crush发布了新的文献求助10
7秒前
8秒前
8秒前
李健的小迷弟应助郭mm采纳,获得10
9秒前
852应助郭mm采纳,获得10
9秒前
热心市民小红花应助郭mm采纳,获得10
9秒前
猪猪hero应助郭mm采纳,获得10
9秒前
科研通AI2S应助郭mm采纳,获得10
9秒前
羊羊羊完成签到,获得积分10
9秒前
22应助郭mm采纳,获得10
9秒前
田様应助郭mm采纳,获得10
9秒前
捂热法捂不热你的心关注了科研通微信公众号
9秒前
小黄发布了新的文献求助10
11秒前
科研通AI2S应助thousandlong采纳,获得10
11秒前
12秒前
12秒前
牛奶牛奶发布了新的文献求助10
12秒前
12秒前
13秒前
23533213完成签到,获得积分20
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149