Intelligent Edge-Enabled Efficient Multi-Source Data Fusion for Autonomous Surface Vehicles in Maritime Internet of Things

计算机科学 传感器融合 GSM演进的增强数据速率 实时计算 物联网 鉴定(生物学) 人工智能 计算机视觉 嵌入式系统 植物 生物
作者
Ryan Wen Liu,Yu Guo,Jiangtian Nie,Qin Hu,Zehui Xiong,Yonghao Han,Mohsen Guizani
出处
期刊:IEEE transactions on green communications and networking [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 1574-1587 被引量:33
标识
DOI:10.1109/tgcn.2022.3158004
摘要

With the rapid development of low-end Internet of Things (IoT) devices and shipborne sensors, efficient multi-source data fusion methods for autonomous surface vehicles (ASVs) have recently attracted significant research interest in intelligent edge-enabled maritime applications. The data fusion capacity can enhance the situation awareness of ASVs, leading to improved efficacy and safety in ASV-empowered maritime IoT (MIoT). Both cameras and automatic identification system (AIS) equipment, which provide visual and positioning information, respectively, have become the commonly adopted cost-effective sensors. In this work, we first introduce a lightweight YOLOX-s network with transfer learning to accurately and robustly detect the moving vessels at different scales in real time. A data augmentation method is then proposed to promote its generalization ability. The detected vessels and synchronous AIS messages are finally fused to make full use of the multi-source sensing data, contributing to an augmented reality (AR)-based maritime navigation system at the shipborne intelligent edges. The AR system is able to superimpose both static and dynamic information from the collected AIS messages onto the video-captured images. It has the capacity of providing auxiliary information for early warning of navigation risks for ASVs in MIoT networks. Compared with traditional single-sensor-based navigation methods, our data fusion framework exhibits more reliable and robust results, and appears to have substantial practical potential applications. Extensive experiments have been conducted to demonstrate the superior performance of our framework under different navigational conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
蒜蒜发布了新的文献求助30
2秒前
sopha完成签到,获得积分10
2秒前
2秒前
rorocris发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
烟花应助伶俐的采枫采纳,获得10
4秒前
coco关注了科研通微信公众号
5秒前
所爱皆在发布了新的文献求助10
5秒前
6秒前
6秒前
NexusExplorer应助花生采纳,获得10
7秒前
内向灵凡发布了新的文献求助10
7秒前
科研通AI2S应助jennyyu采纳,获得10
7秒前
等等发布了新的文献求助10
8秒前
共享精神应助橘子采纳,获得10
8秒前
Fen3i发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
小二郎应助lk采纳,获得10
9秒前
我是老大应助乌云采纳,获得10
9秒前
Achhz关注了科研通微信公众号
9秒前
10秒前
Akim应助李栗子采纳,获得10
10秒前
容二遥完成签到,获得积分10
11秒前
呆萌的白竹完成签到,获得积分10
11秒前
建建完成签到,获得积分10
11秒前
NI发布了新的文献求助10
11秒前
11秒前
12秒前
曹俊蔚发布了新的文献求助10
12秒前
思源应助霞霞采纳,获得10
12秒前
derlun发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049