Learning Enriched Features for Fast Image Restoration and Enhancement

去模糊 计算机科学 人工智能 卷积神经网络 块(置换群论) 图像复原 水准点(测量) 图像分辨率 计算机视觉 特征(语言学) 图像(数学) 模式识别(心理学) 图像处理 语言学 哲学 几何学 数学 大地测量学 地理
作者
Syed Waqas Zamir,Aditya Arora,Salman Khan,Munawar Hayat,Fahad Shahbaz Khan,Ming–Hsuan Yang,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (2): 1934-1948 被引量:209
标识
DOI:10.1109/tpami.2022.3167175
摘要

Given a degraded input image, image restoration aims to recover the missing high-quality image content. Numerous applications demand effective image restoration, e.g., computational photography, surveillance, autonomous vehicles, and remote sensing. Significant advances in image restoration have been made in recent years, dominated by convolutional neural networks (CNNs). The widely-used CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatial details are preserved but the contextual information cannot be precisely encoded. In the latter case, generated outputs are semantically reliable but spatially less accurate. This paper presents a new architecture with a holistic goal of maintaining spatially-precise high-resolution representations through the entire network, and receiving complementary contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing the following key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) non-local attention mechanism for capturing contextual information, and (d) attention based multi-scale feature aggregation. Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on six real image benchmark datasets demonstrate that our method, named as MIRNet-v2, achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNetv2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一一完成签到,获得积分10
1秒前
科研通AI5应助尚好佳采纳,获得10
1秒前
1秒前
生技BT完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
duanduan发布了新的文献求助10
3秒前
九九完成签到,获得积分10
3秒前
梓然完成签到,获得积分10
3秒前
5秒前
5秒前
wmlsdym完成签到,获得积分10
5秒前
以笑儿过完成签到 ,获得积分10
6秒前
6秒前
聪慧雪糕发布了新的文献求助10
6秒前
6秒前
FashionBoy应助TAOS采纳,获得10
7秒前
7秒前
Lak发布了新的文献求助30
7秒前
wenhuanwenxian完成签到 ,获得积分10
7秒前
白志文完成签到,获得积分10
8秒前
8秒前
8秒前
wmlsdym发布了新的文献求助10
8秒前
lalala应助Kung采纳,获得10
8秒前
yrh发布了新的文献求助10
9秒前
9秒前
爱学习的瑞瑞子完成签到 ,获得积分10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
顾矜应助黑叔叔采纳,获得30
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得30
11秒前
贰鸟应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
细腻的莫茗完成签到,获得积分20
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931