Learning Enriched Features for Fast Image Restoration and Enhancement

去模糊 计算机科学 人工智能 卷积神经网络 块(置换群论) 图像复原 水准点(测量) 图像分辨率 计算机视觉 特征(语言学) 图像(数学) 模式识别(心理学) 图像处理 语言学 哲学 几何学 数学 大地测量学 地理
作者
Syed Waqas Zamir,Aditya Arora,Salman Khan,Munawar Hayat,Fahad Shahbaz Khan,Ming–Hsuan Yang,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 1934-1948 被引量:209
标识
DOI:10.1109/tpami.2022.3167175
摘要

Given a degraded input image, image restoration aims to recover the missing high-quality image content. Numerous applications demand effective image restoration, e.g., computational photography, surveillance, autonomous vehicles, and remote sensing. Significant advances in image restoration have been made in recent years, dominated by convolutional neural networks (CNNs). The widely-used CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatial details are preserved but the contextual information cannot be precisely encoded. In the latter case, generated outputs are semantically reliable but spatially less accurate. This paper presents a new architecture with a holistic goal of maintaining spatially-precise high-resolution representations through the entire network, and receiving complementary contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing the following key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) non-local attention mechanism for capturing contextual information, and (d) attention based multi-scale feature aggregation. Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on six real image benchmark datasets demonstrate that our method, named as MIRNet-v2, achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNetv2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助chentle采纳,获得10
2秒前
司康完成签到,获得积分10
4秒前
5秒前
von完成签到,获得积分10
5秒前
5秒前
奥利奥爱好者完成签到,获得积分10
5秒前
Wiesen完成签到,获得积分10
6秒前
glj发布了新的文献求助10
6秒前
yu完成签到 ,获得积分10
9秒前
11秒前
12秒前
科研通AI5应助于于于采纳,获得10
13秒前
许一完成签到,获得积分10
15秒前
tangtang发布了新的文献求助10
15秒前
轩辕断天发布了新的文献求助10
16秒前
17秒前
roll完成签到,获得积分10
18秒前
21秒前
22秒前
希望天下0贩的0应助hihi采纳,获得10
25秒前
xiaomili发布了新的文献求助10
25秒前
Scheduling完成签到 ,获得积分10
27秒前
27秒前
Fox完成签到 ,获得积分10
27秒前
LX77bx完成签到,获得积分10
27秒前
顾矜应助allucky采纳,获得10
28秒前
可爱的函函应助tangtang采纳,获得10
28秒前
智者完成签到,获得积分10
29秒前
30秒前
31秒前
笑笑发布了新的文献求助10
32秒前
HC完成签到,获得积分10
35秒前
cyz发布了新的文献求助10
36秒前
xiaolang2004完成签到,获得积分10
36秒前
阿德里亚诺完成签到,获得积分10
36秒前
bkagyin应助科研通管家采纳,获得10
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
Owen应助科研通管家采纳,获得10
37秒前
iNk应助科研通管家采纳,获得10
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425