Learning Enriched Features for Fast Image Restoration and Enhancement

去模糊 计算机科学 人工智能 卷积神经网络 块(置换群论) 图像复原 水准点(测量) 图像分辨率 计算机视觉 特征(语言学) 图像(数学) 模式识别(心理学) 图像处理 语言学 哲学 几何学 数学 大地测量学 地理
作者
Syed Waqas Zamir,Aditya Arora,Salman Khan,Munawar Hayat,Fahad Shahbaz Khan,Ming–Hsuan Yang,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (2): 1934-1948 被引量:209
标识
DOI:10.1109/tpami.2022.3167175
摘要

Given a degraded input image, image restoration aims to recover the missing high-quality image content. Numerous applications demand effective image restoration, e.g., computational photography, surveillance, autonomous vehicles, and remote sensing. Significant advances in image restoration have been made in recent years, dominated by convolutional neural networks (CNNs). The widely-used CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatial details are preserved but the contextual information cannot be precisely encoded. In the latter case, generated outputs are semantically reliable but spatially less accurate. This paper presents a new architecture with a holistic goal of maintaining spatially-precise high-resolution representations through the entire network, and receiving complementary contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing the following key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) non-local attention mechanism for capturing contextual information, and (d) attention based multi-scale feature aggregation. Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on six real image benchmark datasets demonstrate that our method, named as MIRNet-v2, achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNetv2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mch发布了新的文献求助10
刚刚
葛儿完成签到 ,获得积分10
1秒前
烟花应助成就的沛菡采纳,获得10
1秒前
一只蜗牛完成签到,获得积分10
1秒前
lucky完成签到 ,获得积分10
1秒前
从容的雨灵完成签到,获得积分10
2秒前
成就的寒荷完成签到 ,获得积分10
2秒前
Wonder完成签到,获得积分10
2秒前
shuogesama完成签到,获得积分10
2秒前
自由的傲易完成签到,获得积分10
3秒前
完美世界应助丹丹采纳,获得10
3秒前
贪玩的誉完成签到,获得积分10
3秒前
4秒前
黎明完成签到,获得积分10
4秒前
4秒前
5秒前
平淡的芯阳完成签到 ,获得积分10
5秒前
yx阿聪完成签到,获得积分10
5秒前
Joaquin完成签到,获得积分10
5秒前
飞天猫完成签到 ,获得积分10
6秒前
wei完成签到,获得积分10
6秒前
caia应助yukime采纳,获得20
6秒前
jou完成签到,获得积分10
6秒前
deer完成签到,获得积分10
7秒前
7秒前
geold完成签到,获得积分10
7秒前
温文尔雅完成签到,获得积分10
8秒前
Tomi发布了新的文献求助10
9秒前
lessormoto发布了新的文献求助20
9秒前
小冉完成签到,获得积分10
10秒前
jj完成签到,获得积分10
10秒前
天天快乐应助星星采纳,获得10
10秒前
zxs完成签到,获得积分10
10秒前
洪先生完成签到 ,获得积分10
11秒前
hi_traffic发布了新的文献求助10
11秒前
LYN完成签到,获得积分10
11秒前
alan发布了新的文献求助10
11秒前
小垚完成签到,获得积分10
11秒前
末小皮发布了新的文献求助10
12秒前
陈豆豆完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890